
Worksheet 02: Introduction to NumPy and its application in
image manipulation

Part one: numpy routines:

1 Import numpy and get documentations

• Write the instructions to import the NumPy module and alias it as np.

• How to get help on a NumPy function?

2 Array creation (shapes and types)

• Create a 1D NumPy array containing integers from 0 to 9.

• Create a 2D NumPy array containing integers from 0 to 15 arranged in a 4x4 grid.

• Create a 1D NumPy array containing the values 2, 4, 6, 8, and 10 using the np.arange()
function.

• Create a 3D NumPy array containing random floating-point numbers between 0 and 1 with
shape (2, 3, 4).

• Create a 1D NumPy array of length 5 containing all zeros.

• Create a 1D NumPy array of length 8 containing all ones.

• Create a 2D NumPy array with shape (3, 2) containing all zeros.

• Create a 2D NumPy array with shape (4, 3) containing all ones.

• Create a 1D NumPy array containing 30 equally spaced values between 0 and 1.

• Create a 4x4 2D array with ones on the diagonal and zeroes elsewhere.

• Create a 5x2 array of flaot numbers, filled with 7.

• Let x = np.arange(7, dtype=np.int64). Create an array of 8 with the same shape and type
as X.

• Show the documentation of the following NumPy functions then try to use it,
np.asscalar,np.asarray, np.asmatrix.

• Let x = np.array([1, 2, 3]). Create an array copy of x, which has a different id from x.

1

• Create a 1-D array of 50 element spaced evenly on a log scale between 3. and 10. .

• Use the function np.diagflat to create a matrix with the diagonal [1,2,3,4,5,6,7].

• Use the function np.tri; np.tril and np.triu to create the following arrays.

– array([[0., 0., 0., 0., 0.],
[1., 0., 0., 0., 0.],
[1., 1., 0., 0., 0.]])

– array([[0, 0, 0],
[4, 0, 0],
[7, 8, 0],
[10, 11, 12]])

– array([[1, 2, 3],
[4, 5, 6],
[0, 8, 9],
[0, 0, 12]])

3 Array manipulation

• Let x be a ndarray [10, 10, 3] with all elements set to one. Reshape x so that the size of
the second dimension equals 150.

• Execute the following instruction then guess what the negative index do:
– np.reshape(x, [-1,3, 25])
– np.reshape(x, [-1, 50])

• Let x be array [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]. Con-
vert it to [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

• Execute the following instructions then guess what the np.squeeze do

x=np.ones((3,1,2))
print(x)
np.squeeze(x)

• What is the instruction that transpose a matrix?

2

Part Two: Using numpy arrays’ operations and image manipulation
(application):

1. To begin, let us load the image into numpy. This can be done by using the imread() function
from the matplotlib library. This function allows numpy to read graphic files with differ-
ent extensions. The output is a two-dimensional array with the dimensions equal to the
dimensions of the image, and the values corresponding to the colors of the pixels. Here
we will work with a grayscale image, so the elements in the array will be integers ranging
from 0 to 255 in the numpy integer format uint8. Type in the following code to load the file
“fibonacci.jpg” into numpy:

from matplotlib import pyplot as plt
ImJPG = plt.imread('fibonacci.jpg')
#you can get the image from the link

https://ydjemmada.github.io/fibonacci.jpg

The array ImJPG is a two-dimensional array of the type uint8 which contains values from 0
to 255 corresponding to the color of each individual pixel in the image, where 0 corresponds
to black and 255 to white. You can visualize this array by printing it in the console:

print(ImJPG) #prints the array values
plt.imshow(ImJPG,cmap='gray')#shows the image

2. Use the shape attribute to check the dimensions of the obtained array ImJPG:

m, n = ImJPG.shape

1. What are the dimensions of the image?

3. Check the type of the array ImJPG by using the dtype attribute: ImJPG.dtype The output of
the dtype attribute is a numpy data type.

4. Find the range of colors in the image by using the amin and amax functions and save those
elements as maxImJPG and minImJPG:

maxImJPG = np.amax(ImJPG)
minImJPG = np.amin(ImJPG)

5. Finally, display the image on the screen by using imshow:

plt.imshow(ImJPG, cmap='gray')

If you did everything correctly, you should see the image displayed on your screen in a
separate window.

6. To crop the image in numpy, we can select a subarray from the original array ImJPG. The
rows and columns we want to keep from the original array can be specified using indexing.
The following code will select the central part of the image leaving out 100 pixels from the

3

top and bottom, and 100 pixels on the left and 70 pixels on the right, and display the result
using matplotlib:

ImJPG_center = ImJPG[100:m-100, 100:n-70]
import matplotlib.pyplot as plt
plt.imshow(ImJPG_center, cmap='gray')
plt.show()

This will create a new figure window displaying the cropped image.

7. We can paste the selected part of the image into another image. To do this, create a zero
matrix using the command:

ImJPG_border = np.zeros((m, n), dtype=np.uint8)

Then paste the preselected matrix ImJPG_center into matrix ImJPG_border and display the
image:

ImJPG_border[100:m-100, 100:n-70] = ImJPG_center
plt.figure()
plt.imshow(ImJPG_border, cmap='gray')

Notice the use of the data type np.uint8. It is necessary to use this data type because by
default the array will be of the type float, and imshow command does not work correctly
with this type of array.

8. To flip the image vertically using NumPy, we can use the flipud function:

ImJPG_vertflip = np.flipud(ImJPG)
plt.imshow(ImJPG_vertflip, cmap='gray')

This will create a new array ImJPG_vertflip that is a vertically flipped version of the original
array ImJPG.

9. To transpose the matrix using NumPy, we can use the transpose attribute:

ImJPG_transpose = ImJPG.transpose()
plt.imshow(ImJPG_transpose, cmap='gray')

10. To flip the image horizontally using NumPy, we can combine the transpose attribute and the
fliplr function:

ImJPG_horflip = np.fliplr(ImJPG_transpose).transpose()
plt.imshow(ImJPG_horflip, cmap='gray')

11. To rotate the image by 90 degrees using NumPy, we can use the rot90 function:

ImJPG90 = np.rot90(ImJPG)
plt.imshow(ImJPG90, cmap='gray')

12. Execute the following numpy commands:

4

ImJPG_inv = 255-ImJPG
plt.imshow(ImJPG_inv)
plt.show()

Display the resulting image using matplotlib’s imshow function in a new figure window.
Note that the constant 255 is subtracted from the array ImJPG, which mathematically does
not make sense. However, in numpy, the constant 255 is treated as an array of the same size
as ImJPG with all the elements equal to 255. Explain what happened to the image.

13. It is also easy to lighten or darken images using matrix addition. For instance, the following
code will create a darker image:

ImJPG_dark=np.clip(np.array(ImJPG, dtype='int16') - 50, 0, 255)
plt.imshow(ImJPG_dark,cmap='gray')
plt.show()

You can darken the image even more by changing the constant to a number larger than 50.
Note that this command can technically make some of the elements of the array to become
negative. However, because the ImJPG array type is int16, with the function clip those ele-
ments are automatically rounded to zero.

14. Let us create Andy Warhol style art with the image provided. To do so we will arrange four
copies of the image into a 2×2 matrix. For the top left corner we will take the unaltered
image. For the top right corner we will darken the image by 50 shades of gray. For the
bottom left corner, lighten the image by 100 shades of gray, and finally, for the bottom right
corner, lighten the image by 50 shades of gray. Then we will arrange the images together in
one larger matrix using numpy’s concatenation function. Finally, display the resulting block
matrix as a single image using matplotlib’s imshow function.

im1 = ImJPG
im2 = np.clip(np.array(ImJPG, dtype='int16') - 50, 0, 255)
im3 = np.clip(np.array(ImJPG, dtype='int16') + 100, 0, 255)
im4 = np.clip(np.array(ImJPG, dtype='int16') + 50, 0, 255)
row1 = np.concatenate((im1, im2), axis=1)
row2 = np.concatenate((im3, im4), axis=1)
ImJPG_warhol = np.concatenate((row1, row2), axis=0)
plt.imshow(ImJPG_warhol,cmap='gray')
plt.show()

15. Numpy has several functions which allow one to round any number to the nearest integer
or a decimal fraction with a given number of digits after the decimal point. Those functions
include: floor which rounds the number towards negative infinity (to the smaller value), ceil
which rounds towards positive infinity (to the larger value), round which rounds towards
the nearest decimal or integer, and fix which rounds towards zero.

A naive way to obtain black and white conversion of the image can be accomplished by
making all the gray shades which are darker or equal to a medium gray (described by a
value 128) to appear as a complete black, and all the shades of gray which are lighter than
this medium gray to appear as white. This can be done, for instance, by using the code:

5

ImJPG_bw = np.uint8(255*np.floor(ImJPG/128))
plt.imshow(ImJPG_bw, cmap='gray')
plt.show()

Note that this conversion to black and white results in a loss of many details of the image.
There are possibilities to create black and white conversions without losing so many details.
Also, notice the function np.uint8 used to convert the result back to the integer format.

16. Write code to reduce the number of shades in the image from 256 to 8 using the round
function. Save the resulting array as ‘ImJPG8’ and display it in a separate window.

ImJPG8 = np.round(ImJPG / 32)
plt.imshow(ImJPG8.astype('uint8'), cmap='gray')
plt.show()

17. Increase the contrast of the image by changing the range of possible shades of gray. One way
to do this is to scalar multiply the array by a constant. Use the following code:

ImJPG_HighContrast = np.clip((1.25 * ImJPG),0,255)
plt.imshow(ImJPG_HighContrast, cmap='gray')
plt.show()

Observe the result by displaying the image. You can manipulate the contrast by increasing
or decreasing the constant (we use 1.25 in this case). Note that this operation may cause
some elements of the array to become outside the 0-255 range, potentially leading to data
loss. Save the resulting array as ‘HighContrast’.

18. Apply gamma correction to the image using the following code:

ImJPG_Gamma05 = np.clip(ImJPG** 0.95,0,255)
plt.imshow(ImJPG_Gamma05, cmap='gray')
plt.show()
ImJPG_Gamma15 = np.clip(ImJPG ** 1.15,0,255)
plt.imshow(ImJPG_Gamma15, cmap='gray')
plt.show()

Observe the results by displaying the images. The above code will produce two images,
one with gamma equal to 0.95 (ImJPG_Gamma05) and one with gamma equal to 1.05
(ImJPG_Gamma15). Gamma correction is a nonlinear operation that can be used to adjust
the brightness and contrast of an image.

6

	Import numpy and get documentations
	Array creation (shapes and types)
	Array manipulation

