
Chapter 4: Generating Functions

In this chapter, we introduce Generating Functions, a fundamental problem-solving tool in combina-
torics. We treat these functions as formal power series. This means we are interested in the algebraic
properties of their coefficients and the structural information they carry, rather than the convergence
of the series for numerical values of x.

We will organize our study into three main parts:
1. Ordinary Generating Functions (OGFs): Used primarily for selection problems where order

does not matter.
2. Exponential Generating Functions (EGFs): Used primarily for arrangement problems where

order matters (labeled structures).
3. Multivariate Generating Functions: Used for problems involving multiple parameters.

1. Preliminaries: Manipulation of Sums
Summations are the engine room of discrete mathematics, particularly when dealing with Generating

Functions and recurrence relations. Before we define generating functions, we must master the tools
to manipulate these sums. These properties allow us to simplify expressions, align indices, and extract
coefficients effectively.

• Linearity: The summation operator is linear. We can split sums and factor out constants.
nX

k=m

(c · ak + d · bk) = c
nX

k=m

ak + d
nX

k=m

bk.

• Splitting (Associativity): We can break a sum into two contiguous parts. For any integer p
such that m ≤ p < n:

nX

k=m

ak =
pX

k=m

ak +
nX

k=p+1
ak.

• Index Shifting (Substitution): This is the discrete equivalent of "u-substitution" in integrals.
To shift the index by r, we replace k with j − r:

nX

k=m

ak =
n+rX

j=m+r

aj−r.

Usage: This is crucial in Generating Functions for aligning powers of x.
• Reversing Order: We can sum from the end to the beginning by substituting j = n − k.

nX

k=0
ak =

nX

j=0
an−j.

Usage: This property is often used to recognize convolutions.
• Double Sum Swapping (Fubini’s Principle): For finite sums with independent bounds, the

order of summation is interchangeable:
nX

i=1

mX

j=1
aij =

mX

j=1

nX

i=1
aij

• Separable Variables (Product Rule): If the term aij can be factored into f(i) · g(j), the
double sum simplifies to the product of two single sums:

nX

i=1

mX

j=1
f(i)g(j) =

 
nX

i=1
f(i)

!


mX

j=1
g(j)




• Dependent Bounds: If the inner limit depends on the outer index (1 ≤ j ≤ i ≤ n), the indices
swap as follows:

nX

i=1

iX

j=1
aij =

nX

j=1

nX

i=j

aij

• General Double Sum Swapping: For any finite index sets I and J , if the summation limits
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are independent:
X

i∈I


X

j∈J

aij


 =

X

(i,j)∈I×J

aij =
X

j∈J

 X

i∈I

aij

!

• Separable Variables (Product Rule): If aij can be factored into f(i)g(j), the sum over the
Cartesian product I × J simplifies to:

X

i∈I

X

j∈J

f(i)g(j) =
 X

i∈I

f(i)
!

X

j∈J

g(j)



• Dependent Bounds (The Subset Rule): If the index j depends on i (i.e., (i, j) ∈ S ⊆ I × J),
we sum over the relation S: X

i∈I

X

j∈J(i)
aij =

X

(i,j)∈S

aij =
X

j∈J

X

i∈I(j)
aij

where J(i) = {j : (i, j) ∈ S} and I(j) = {i : (i, j) ∈ S}.
• The Telescoping Sum: If a term can be written as a difference ak = bk+1 − bk, the intermediate

terms cancel out.
nX

k=m

(bk+1 − bk) = bn+1 − bm.

These properties will be used extensively in the following sections to transform recurrence relations
into algebraic equations.

2. Ordinary Generating Functions
We begin with the most common type of generating function, used to encode sequences where the

position in the sequence corresponds to the power of x.

2.1 Definition and Basic Examples
Definition 2.1 (Ordinary Generating Function (OGF)).
The Ordinary Generating Function (OGF) for an infinite sequence {an}∞

n=0 = (a0, a1, a2, . . . ) is
the formal power series:

G(x) =
∞X

n=0
anxn = a0 + a1x + a2x

2 + a3x
3 + . . . (1)

In this series, the coefficient an is the n-th term of the sequence. This series is often represented by
a compact expression (or closed form). Expanding this expression generates a power series having
the terms of the sequence as coefficients.

Example (Constant Sequence).
Consider the sequence (1, 1, 1, 1, . . . ), where an = 1 for all n ≥ 0. Its generating function is the
geometric series:

f(x) =
X

n≥0
xn = 1 + x + x2 + . . .

In closed form (formally), this is:
f(x) = 1

1 − x
.

Example (Alternating Sequence).
Consider the sequence (1, −1, 1, −1, . . . ). The OGF is:

A(x) = 1 − x + x2 − x3 + · · · =
∞X

n=0
(−1)nxn.

Using the geometric series formula with −x, we get:

A(x) = 1
1 + x

.
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2.2 Operations on Ordinary Generating Functions
To solve problems effectively, we need to know how manipulating a sequence affects its generating

function, and vice versa. Table 3 summarizes these fundamental operations.
Let f(x) and g(x) be the OGFs associated with sequences (an)n≥0 and (bn)n≥0 respectively.

Rule Sequence (cn)n≥0 OGF h(x)

Scaling λa0, λa1, λa2, . . . h(x) = λf(x)

Addition (a0 + b0), (a1 + b1), . . . h(x) = f(x) + g(x)

k-right-shift 0, 0, . . . , 0| {z }
k zeroes

, a0, a1, . . . h(x) = xkf(x)

k-left-shift ak, ak+1, ak+2, . . . h(x) = f(x)−
Pk−1

i=0 aix
i

xk

Differentiation a1, 2a2, 3a3, . . . , nan, . . . h(x) = f ′(x)

Integration 0, a0,
a1
2 , a2

3 , . . . h(x) =
R x

0 f(z)dz

Difference a0, (a1 − a0), (a2 − a1), . . . h(x) = (1 − x)f(x)

Product (Cauchy) a0b0, a1b0 + a0b1, . . . h(x) = f(x)g(x)

Table 3: Operations on OGFs.

Definition 2.2 (Addition and Scaling).
Based on the table above, if A(x) ↔ (an) and B(x) ↔ (bn), then:

A(x) + B(x) ↔ (an + bn)
cA(x) ↔ (can) for any constant c.

One of the most powerful operations is the product of two generating functions, which corresponds
to the convolution of their sequences.

Theorem 2.3 (Convolution / Product Rule).
Let A(x) = P

anxn and B(x) = P
bnxn. The product C(x) = A(x)B(x) is the generating function

for the sequence (cn), where:

cn =
nX

k=0
akbn−k.

The sequence (cn) is called the convolution of (an) and (bn).

Example (Square of the Geometric Series).
Let A(x) = 1

1−x
, which corresponds to an = 1. Consider A(x)2 =

�
1

1−x

�2
. By the convolution
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theorem, the coefficient cn is:

cn =
nX

k=0
akan−k =

nX

k=0
1 · 1 = n + 1.

Thus, 1
(1−x)2 = P∞

n=0(n + 1)xn.

2.3 Standard OGF Sequences
Using the operations defined above, we can derive the OGFs for other common sequences, such as

linear sequences.

Theorem 2.4 (OGF for Linear Sequences).
Let an = n. Then:

∞X

n=1
nxn = x

(1 − x)2 .

Theorem 2.5 (Generating Function of Fibonacci Numbers).
Let F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. The generating function of the Fibonacci
sequence is:

F (x) =
∞X

n=0
Fnxn = x

1 − x − x2 .

Exercise.
Prove that the generating function for the sequence of triangular numbers Tn = n(n+1)

2 is x
(1−x)3 .

Solution.
We know from Theorem 4.2 that P∞

n=1 nxn = x
(1−x)2 . We can rewrite the general term as:

∞X

n=1
Tnxn = 1

2

∞X

n=1
n(n + 1)xn = 1

2

∞X

n=1
(n2 + n)xn.

To find the sum for n2, we apply the differentiation operator (x d
dx

) to the known series for n:
∞X

n=1
n2xn = x

d

dx

 
x

(1 − x)2

!
= x(1 + x)

(1 − x)3 .

Substituting this back into the expression for Tn:
∞X

n=1
Tnxn = 1

2

 
x(1 + x)
(1 − x)3 + x

(1 − x)2

!
= 1

2 · x(1 + x) + x(1 − x)
(1 − x)3 = x

(1 − x)3 .

3. Exponential Generating Functions
While OGFs are excellent for unlabelled objects, combinatorial problems involving labeled structures

(like permutations) are often better handled using Exponential Generating Functions.

3.1 Definition and Basic Examples
Definition 3.1 (Exponential Generating Function (EGF)).
The Exponential Generating Function (EGF) for a sequence (an)n≥0 is the formal power series:

E(x) =
∞X

n=0
an

xn

n! = a0 + a1
x

1! + a2
x2

2! + . . . (2)

Note the division by n! in the n-th term.

Example (Constant Sequence and Powers).
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The EGF of the sequence an = mn for all n ≥ 0, where m is a constant, is:

F (x) =
X

n≥0
mn xn

n! = 1 + mx

1! + (mx)2

2! + · · · + (mx)n

n! + · · · = emx.

Specifically, if m = 1 (the constant sequence an = 1), the EGF is ex.

Example (Permutations).
Consider the sequence of factorials, an = n! (the number of permutations of n items).

• The OGF would be Pn!xn, which does not have a simple closed form.
• The EGF is much simpler:

F (x) =
∞X

n=0
n!x

n

n! =
∞X

n=0
xn = 1

1 − x
.

3.2 Operations on Exponential Generating Functions
Just as with OGFs, we have a set of operations for EGFs. Let F (x) and G(x) be the EGFs associated

with sequences (an)n≥0 and (bn)n≥0.

Rule Sequence (cn)n≥0 EGF H(x)

Scaling λa0, λa1, . . . H(x) = λF (x)

Addition (a0 + b0), (a1 + b1), . . . H(x) = F (x) + G(x)

k-right-shift 0, . . . , 0| {z }
k

, a0, . . . H(x) =
Z

· · ·
Z

| {z }
k

F (x)dx

k-left-shift ak, ak+1, . . . H(x) = dk

dxk F (x)

Index multiply 0, a1, 2a2, . . . H(x) = xF ′(x)

Index divide a1,
a2
2 , . . . H(x) = F (x)−F (0)

x

Difference (a1 − a0), (a2 − a1), . . . H(x) = F ′(x) − F (x)

Binomial sum Pn
k=0

�
n
k

�
ak H(x) = exF (x)

Binomial convolution Pn
k=0

�
n
k

�
akbn−k H(x) = F (x)G(x)

Table 4: Operations on EGFs.

The product rule for EGFs differs from OGFs because it automatically handles the binomial coeffi-
cients arising from choosing labels.

Theorem 3.2 (Product of EGFs / Binomial Convolution).
If A(x) and B(x) are the EGFs for (an) and (bn), then A(x)B(x) is the EGF for the sequence (cn)
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defined by:

cn =
nX

k=0

 
n

k

!
akbn−k.

This accounts for the ways to distribute labels between two structures.

3.3 Standard EGF Sequences
We can look at the linear sequence through the lens of EGFs.

Theorem 3.3 (EGF for Linear Sequences).
Let an = n. Then:

∞X

n=0

nxn

n! = xex.

4. Multivariate Generating Functions
For combinatorial objects that have multiple parameters (e.g., a binary string with length n and k

ones), we use functions with multiple variables.

Definition 4.1 (Bivariate Generating Function).
Let (an,k)n,k≥0 be a doubly indexed sequence. The bivariate generating function is:

A(x, y) =
∞X

n=0

∞X

k=0
an,kxnyk.

Definition 4.2 (Mixed Generating Function).
Given a double sequence (an,k)n,k≥0, its mixed ordinary-exponential generating function is:

A(x, y) =
∞X

n=0

∞X

k=0
an,kxn yk

k! .

Example (Binomial Coefficients).
Let an,k =

�
n
k

�
. The bivariate generating function is:

A(x, y) =
∞X

n=0

 
nX

k=0

 
n

k

!
yk

!
xn =

∞X

n=0
(1 + y)nxn = 1

1 − x(1 + y) .
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