
Chapter 2: Advanced Counting Principles
In the first chapter, we covered the foundational concepts and rules of counting. Now, we will explore

more advanced counting principles that allow us to tackle more complex problems.

1. Cardinality of Sets
Let S be a finite set, and let A and B be subsets of S.

Definition 1.1.
The cardinality of a set S, denoted |S|, is the number of elements in S. Specifically, if S =
{e1, e2, . . . , en}, then |S| = n.

Definition 1.2 (Complement of A).
The complement of a subset A of S, denoted Ā, consists of all elements of S that are not in A:

Ā = {x ∈ S | x /∈ A}.

Cardinality: The cardinality of the complement Ā is given by
|Ā| = |S| − |A|.
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Definition 1.3 (Union of Two Sets).
The union of two subsets A and B of S, denoted by A ∪ B, is the set of all elements that are in A,
in B, or in both:

A ∪ B = {x ∈ S | x ∈ A or x ∈ B}.
Cardinality: The cardinality of A ∪ B is calculated by

|A ∪ B| = |A| + |B| − |A ∩ B|.
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Definition 1.4 (Intersection of Two Sets).
The intersection of two subsets A and B of S, denoted by A ∩ B, is the set of all elements that are
in both A and B:

A ∩ B = {x ∈ S | x ∈ A and x ∈ B}.
Cardinality: The cardinality of A ∩ B is simply

|A ∩ B|.
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Definition 1.5 (Difference of Two Sets).
The difference of two sets A and B, denoted A \ B, is the set of all elements that are in A but not
in B:

A \ B = {x ∈ S | x ∈ A and x /∈ B}.
Cardinality: The cardinality of A \ B is

|A \ B| = |A| − |A ∩ B|.
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1.1 Finite Unions and Intersections
Now, let A1, A2, . . . , An be subsets of S.

Definition 1.6 (Finite Unions).
The finite union of A1, A2, . . . , An, subsets of S, is defined as:

n�

i=1
Ai = {x ∈ S | x ∈ Ai for at least one i}.

Cardinality: The cardinality of �n
i=1 Ai is determined by the inclusion-exclusion principle, which

leads to a more complex formula.

Definition 1.7 (Finite Unions of Disjoint Subsets).
If A1, A2, . . . , An are subsets of S such that each pairwise intersection is empty, i.e.,

Ai ∩ Aj = ∅ for all i ̸= j,

then their union is denoted by �n
i=1 Ai.

Cardinality: The cardinality of �n
i=1 Ai is simply the sum of the cardinalities of the individual

sets: �����
n�

i=1
Ai

����� =
n�

i=1
|Ai|.

Definition 1.8 (Finite Intersections).
The finite intersection of A1, A2, . . . , An, subsets of S, is defined as:

n�

i=1
Ai = {x ∈ S | x ∈ Ai for all i}.

Cardinality: The cardinality of �n
i=1 Ai is simply�����

n�

i=1
Ai

����� .

Definition 1.9 (Power Set).
The power set of a set S, denoted by P(S), is the set of all subsets of S, including the empty set
and S itself:

P(S) = {A | A ⊆ S}.

Proposition 1.10 (Cardinality of the Power Set).
If |S| = n, the cardinality of the power set P(S) is given by:

|P(S)| = 2n.



Proof. To count the total number of subsets of a set S with n elements, we observe that subsets
can have cardinalities ranging from 0 to n. The number of subsets with exactly k elements is given
by

�
n
k

�
, the number of ways to choose k elements from n.

By the addition principle, the total number of subsets is:

|P(S)| =
n�

k=0

�
n

k

�
.

Using the binomial theorem:

(1 + 1)n =
n�

k=0

�
n

k

�
= 2n.

Thus, the total number of subsets of S is:
|P(S)| = 2n.

1.2 Floor and Ceiling Functions
Definition 1.11 (Floor and Ceiling Functions).
For any real number x, we know that x lies between two integers n and n + 1, where n ≤ x < n + 1.
In this case:

• The integer n is denoted by ⌊x⌋, called the floor function, which represents the greatest integer
less than or equal to x.

• The integer n + 1 is denoted by ⌈x⌉, called the ceiling function, which represents the smallest
integer greater than or equal to x.

2. Pigeonhole Principle (Dirichlet box principle)
Theorem 2.1 (Pigeonhole Principle - Version 1).
If n + 1 or more pigeons are placed into n pigeonholes, then at least one pigeonhole must contain
more than one pigeon.

Proof. Assume, for the sake of contradiction, that no pigeonhole contains more than one pigeon.
Then, each of the n pigeonholes contains at most one pigeon, leading to a maximum of n pigeons.
However, we have n + 1 pigeons, which is a contradiction. Therefore, at least one pigeonhole must
contain more than one pigeon.
Example.

• In a group of 8 students, at least two of them must have the same day of the week as their
birthday.
To solve this using the Pigeonhole Principle, we define the "pigeons" and "pigeonholes" as
follows:

– Pigeons: Each student in the group (8 students in total).
– Pigeonholes (boxes): The days of the week (7 days: Monday through Sunday).

By the Pigeonhole Principle (PHP), with 8 pigeons and only 7 pigeonholes, at least one day
must be shared by two students. Thus, at least two students have the same birthday day of
the week.

• In a group of 13 students, at least two of them must have the same birth month.
To solve this using the Pigeonhole Principle, we define the "pigeons" and "pigeonholes" as
follows:

– Pigeons: Each student in the group (13 students).
– Pigeonholes (boxes): The months of the year (12 months).

By the Pigeonhole Principle (PHP), with 13 pigeons and only 12 pigeonholes, at least one
month must be shared by two students. Thus, at least two students have the same birth



month.

Theorem 2.2 (Pigeonhole Principle - Version 2).
If kn + 1 pigeons are placed into n pigeonholes, where k is a positive integer, then at least one
pigeonhole must contain at least k + 1 pigeons.

Proof. Assume, for the sake of contradiction, that each pigeonhole contains at most k pigeons.
Then the total number of pigeons would be kn. Since there are kn + 1 pigeons, this contradicts our
assumption. Hence, at least one pigeonhole must contain at least k + 1 pigeons.
Example.

• In a group of 22 students, at least 3 of them must have the same day of the week as their
birthday.
To solve this using the Pigeonhole Principle, we define the "pigeons" and "pigeonholes" as
follows:

– Pigeons: Each student in the group (22 students in total).
– Pigeonholes (boxes): The days of the week (7 days: Monday through Sunday).

By the Pigeonhole Principle (PHP), with 22 pigeons and only 7 pigeonholes, at least one day
must be shared by at least two students. Thus, at least two students have the same birthday
day of the week.

• In a group of 37 people, at least 4 must have been born in the same month.
To solve this using the Pigeonhole Principle, we define the "pigeons" and "pigeonholes" as
follows:

– Pigeons: Each person in the group (37 people in total).
– Pigeonholes (boxes): The months of the year (12 months).

By the Pigeonhole Principle (PHP), with 37 pigeons and only 12 pigeonholes, at least one
month must be shared by at least 4 people. Thus, at least 4 people must have been born in
the same month.

Theorem 2.3 (Generalized Pigeonhole Principle - Version 3).
If m pigeons are placed into n pigeonholes, then at least one pigeonhole contains at least ⌈ m

n
⌉ pigeons.

Proof. Assume, for the sake of contradiction, that every pigeonhole contains fewer than ⌈ m
n

⌉ pigeons.
Then the total number of pigeons would be less than n × ⌈m

n
⌉, which contradicts the fact that there

are m pigeons. Therefore, at least one pigeonhole must contain at least ⌈ m
n

⌉ pigeons.

Example.

Suppose there are 316 students in the first year of NHSM, and we want to distribute them into 12
groups, at least one group must contain at least 27 students.
To solve this using the generalized Pigeonhole Principle, we define the "pigeons" and "pigeonholes"
as follows:

• Pigeons: The 316 students in total.
• Pigeonholes (boxes): The 12 groups.

By the generalized Pigeonhole Principle (PHP), with 316 students and only 12 groups, at least one
group must contain at least ⌈ 316

12 ⌉ = 27 students. Thus, at least one group must have at least 27
students.

Exercise.
Suppose we have gloves of 4 colors: black, red, green, and blue. How many gloves should we grab to
ensure we get a pair of the same color?



Solution.
To guarantee a pair, we define the pigeons as the gloves and the pigeonholes as the 4 colors. By the
Pigeonhole Principle, grabbing 5 gloves ensures at least two gloves of the same color, since there are
only 4 colors.
Thus, we need to grab at least 5 gloves.

Exercise.
Suppose we have gloves of 4 colors: black, red, green, and blue. How many gloves should an octopus
(with 8 hands) grab to ensure it gets a pair of the same color?

Solution.
To guarantee a pair, we define the pigeons as the gloves and the pigeonholes as the 4 colors. By the
Pigeonhole Principle, even if the octopus grabs 7 × 4 + 1 gloves, it ensures that at least 8 gloves of
the same color are taken, since there are only 4 colors.
Thus, the octopus needs to grab at least 29 gloves.

Remarks. • The Pigeonhole Principle can be used to prove the existence of certain properties
within a set of objects.

• Applying the Pigeonhole Principle is not always straightforward and may require thoughtful
construction of "pigeons" and "holes."

• A well-constructed approach can lead to a concise and elegant proof.
• The Pigeonhole Principle guarantees that there is a certain box that contains at least two

objects. However, it does not tell us which box it is or which objects it contains.

Exercise.
Show that in a set S = {a1, a2, . . . , an+1} of n+1 integers, there are at least two integers whose difference
is divisible by n.

3. Inclusion-Exclusion Principle
Let S be a finite set, and A1, A2 ⊆ S. To compute |A1∪A2|, we sum the cardinalities of the individual

sets:

|A1| + |A2|.
However, elements in A1 ∩ A2 are counted twice, so we subtract the intersection:

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|.
For the complement of the union, the size of the set A1 ∩ A2 (the elements not in A1 ∪ A2) is:

|A1 ∩ A2| = |S \ (A1 ∪ A2)| = |S| − |A1| − |A2| + |A1 ∩ A2|.

A1 A2

A1 ∩ A2

Figure 2: Venn diagram of two sets



3.1 Case of the three subsets
Let S now be a finite set, and A1, A2, A3 ⊆ S. To compute |A1 ∪ A2 ∪ A3|, we begin by summing the

cardinalities of the individual sets:

|A1| + |A2| + |A3|.
However, elements in the pairwise intersections A1 ∩ A2, A1 ∩ A3, and A2 ∩ A3 are counted twice, so

we subtract the sizes of these intersections:

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|.
But now, the elements in the triple intersection A1 ∩ A2 ∩ A3 have been subtracted three times, so

we add back the size of this triple intersection:

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|.
For the complement of the union, the size of the set A1 ∩ A2 ∩ A3 (the elements not in A1 ∪ A2 ∪ A3)

is given by:

|A1∩A2∩A3| = |S\(A1∪A2∪A3)| = |S|−|A1|−|A2|−|A3|+|A1∩A2|+|A1∩A3|+|A2∩A3|−|A1∩A2∩A3|.

A1 A2

A3

A1A2A3

A1A2

A1A3 A2A3

Figure 3: Venn diagram of three sets

3.2 General case
As we observe in the cases of two sets and three sets, the computation of the union always starts

with the inclusion of the cardinalities of the individual sets. Next, we exclude the intersections of
pairs of sets because these elements are counted multiple times. This process of alternating inclusion-
exclusion continues, giving rise to the concept known as the Inclusion-Exclusion Principle (IEP).

In the following theorem, we will generalize this principle to compute the cardinality of the union of
n subsets of a finite (universal) set S.

Before proceeding, let us consider subsets A1, A2, . . . , An ⊆ S, where each Ai represents the set of



elements satisfying property i (for i = 1, 2, . . . , n). To simplify notation, we denote the intersection
Ai ∩ Aj directly as AiAj. For example, A1A2A3 represents A1 ∩ A2 ∩ A3.

Theorem 3.1 (General Inclusion-Exclusion Principle).
Let A1, A2, . . . , An be subsets of a finite universal set S. The cardinality of the union |A1∪A2∪· · ·∪An|
is given by the following formula:

|A1 ∪ A2 ∪ · · · ∪ An| =
�

1≤i1≤n

|Ai1 | −
�

1≤i1<i2≤n

|Ai1 ∩ Ai2 | +
�

1≤i1<i2<i3≤n

|Ai1 ∩ Ai2 ∩ Ai3 |

− · · · + (−1)n−1 �

1≤i1<i2<···<in≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Ain |

=
n�

k=1
(−1)k−1 �

1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik
|.

Proof. First proof: By induction.

Second proof:
The theorem calculates the number of elements in the finite union of subsets A1, A2, . . . , An. The
key idea is that for any element x ∈ S, it is either counted 0 times (if x /∈ A1 ∪ A2 ∪ · · · ∪ An) or
counted exactly once (if x ∈ A1 ∪ A2 ∪ · · · ∪ An).

• If x /∈ A1 ∪A2 ∪ · · ·∪An: This implies that x /∈ Ai for any 1 ≤ i ≤ n. Consequently, x is not in
any intersection of the subsets, and thus the right-hand side (RHS) equals the left-hand side
(LHS).

• If x ∈ A1 ∪ A2 ∪ · · · ∪ An: This means that x satisfies at least one of the properties 1, 2, . . . , n.
Suppose x satisfies exactly k properties, corresponding to the indices {i1, i2, . . . , ik} ⊆
{1, 2, . . . , n}. Then:

– x is included
�

k
1

�
= k times in any single subset of {Ai1 , Ai2 , . . . , Aik

}.
– It is excluded

�
k
2

�
times in any intersection of two subsets of {Ai1 , Ai2 , . . . , Aik

}.
– It is included

�
k
3

�
times in any intersection of three subsets of {Ai1 , Ai2 , . . . , Aik

}.
– · · ·
– Finally, it is included (if k is odd) or excluded (if k is even) in the intersection of k subsets

of {Ai1 , Ai2 , . . . , Aik
}.

Therefore, the right-hand side counts x:
�

k

1

�
−

�
k

2

�
+

�
k

3

�
− · · · + (−1)k−1

�
k

k

�
=

k�

i=1
(−1)i−1

�
k

i

�
times.

But:
k�

i=1
(−1)i−1

�
k

i

�
= −

k�

i=1
(−1)i

�
k

i

�
= −

�
k�

i=0
(−1)i

�
k

i

�
− 1

�
= 1.

So, any x is counted exactly once, meaning the formula correctly calculates the union of the
subsets A1, A2, . . . , An.

Corollary 3.2 (Complementary form).
The cardinality of the complement of the union of subsets A1, A2, . . . , An is:

|A1 ∩ A2 ∩ · · · ∩ An| = |S| −
n�

k=1
(−1)k−1 �

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| .

Proof. By definition, the complement of the union is:
|A1 ∩ A2 ∩ · · · ∩ An| = |S| − |A1 ∪ A2 ∪ · · · ∪ An|.

Substituting the Inclusion-Exclusion formula for |A1 ∪ A2 ∪ · · · ∪ An| proves the result.



When to Use IEP
• Union of Sets: Apply IEP to calculate the size of a union when overlaps cause over-counting.
• Complement of Union: To compute the complement of a union, subtract the union’s size from

the size of the universal set, and this is the common application of IEP.
• The universal set S includes all the elements under consideration for the problem, without con-

sidering any specific conditions or restrictions imposed by subsets.
Steps for Applying IEP

1. Define the Sets: Specify the subsets A1, A2, . . . , An, where each represents a specific condition
or property.

2. Compute Intersections: Calculate the sizes of all intersections, such as:
|Ai1 ∩ Ai2 ∩ · · · ∩ Aik

| .

3. Apply the IEP Formula: Compute the union’s size using:

|A1 ∪ A2 ∪ · · · ∪ An| =
n�

k=1
(−1)k−1 �

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| .

4. Classical examples of using IEP
We now apply the principle to a series of classical combinatorial problems.

4.1 Derangements: Permutations Without Fixed Points
Definition 4.1 (Derangement).
A derangement is a permutation of n elements {e1, e2, . . . , en} such that no element ei is in its
original position i.

Theorem 4.2 (Number of derangements).
The number of derangements of a set of n elements, denoted by Dn, is given by:

Dn = n!
n�

k=0

(−1)k

k! .

From the definition, a derangement of {e1, . . . , en} is a permutation where e1 is not in position 1,
e2 is not in position 2, and so on, with en not in position n. To calculate the number of such permu-
tations, we count the number of elements in the set of permutations that satisfy e1 /∈ position 1, e2 /∈
position 2, . . . , en /∈ position n. This requires counting the intersections of sets, which leads us to the
complementary form of Inclusion-Exclusion Principle (IEP):

|A1 ∩ A2 ∩ · · · ∩ An| = |S| −
n�

k=1
(−1)k−1 �

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| .

• Define the Sets:
– Ai: The set of permutations where ei is not in position i.
– Ai: The set of permutations where ei is in position i.
– S: The universal set, representing all permutations of {e1, . . . , en}, without any restrictions.

• Compute Intersections: Using the definition of intersections:
– Cardinality of S:

|S| = n!.
– Single Sets: Each |Ai1 | = (n − 1)!, so:

�

1≤i1≤n

|Ai1 | =
�

n

1

�
(n − 1)!.



– Intersections of Two Sets: The intersection |Ai1 ∩ Ai2 | = (n − 2)!, so:
�

1≤i1<i2≤n

|Ai1 ∩ Ai2 | =
�

n

2

�
(n − 2)!.

– General Case for k Sets: The intersection of k subsets |Ai1 ∩ · · · ∩ Aik
| = (n − k)!. Thus:

�

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| =

�
n

k

�
(n − k)!.

• Apply the IEP Formula: Substituting these results into the Inclusion-Exclusion formula:

|A1 ∩ A2 ∩ · · · ∩ An| = |S| −
n�

k=1
(−1)k−1 �

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| ,

= n! −
n�

k=1
(−1)k−1

�
n

k

�
(n − k)!,

= n! +
n�

k=1
(−1)k n!

k! ,

= n!
n�

k=0

(−1)k

k! .

This proves the formula for the number of derangements Dn = n! �n
k=0

(−1)k

k! .

4.2 Number of Integer Solutions to a Linear Equation with Constraints
We aim to count the number of solutions to the equation (S), defined as:

(S)
�

x1 + x2 + · · · + xn = k
ri ≤ xi ≤ si ∀i ∈ {1, 2, · · · , n}

First, let us define new variables yi = xi − ri for each i ∈ {1, 2, · · · , n}. Substituting these into the
equation, we obtain the equivalent system:

(S)





y1 + y2 + · · · + yn = k −
n�

i=1
ri

� �� �
r

0 ≤ yi ≤ si − ri� �� �
li

∀i ∈ {1, 2, · · · , n}
⇐⇒

�
y1 + y2 + · · · + yn = k − r
0 ≤ yi ≤ li ∀i ∈ {1, 2, · · · , n}

Next, consider the equation (Ω) obtained by relaxing the upper bounds on yi, i.e., without the
constraints on yi:

(Ω)
�

y1 + y2 + · · · + yn = k − r
yi ≥ 0 ∀i ∈ {1, 2, · · · , n}

Our task is to find the number of solutions to (Ω) under the constraints 0 ≤ y1 ≤ l1, 0 ≤ y2 ≤ l2,
and so on for each yi. This is equivalent to counting the size of the intersection of sets:

|A1 ∩ A2 ∩ · · · ∩ An|
where

Ai = {(y1, y2, · · · , yn) ∈ Ω : 0 ≤ yi ≤ li} ∀i ∈ {1, 2, . . . , n}.
Using the Inclusion-Exclusion Principle (IEP), we have:

|A1 ∩ A2 ∩ · · · ∩ An| = |Ω| −
n�

m=1
(−1)m−1 �

1≤i1<···<im≤n

|Ai1 ∩ · · · ∩ Aim | ,

where
Ai = {(y1, y2, · · · , yn) ∈ Ω : yi ≥ li + 1} ∀i ∈ {1, 2, . . . , n}.

Now, to find the number of solutions for each Ai, we make a substitution: let zi = yi − li − 1 for
each i, so that yi ≥ li + 1 corresponds to zi ≥ 0. The number of solutions to Ai is then:



|Ai| =
��

n

k − r − li − 1

��
.

For the intersection of two sets Ai and Aj, the number of solutions is:

|Ai ∩ Aj| =
��

n

k − r − li − lj − 2

��
.

In the general case, the number of solutions for the intersection of m sets Ai1 , Ai2 , . . . , Aim is:

|Ai1 ∩ · · · ∩ Aim | =
��

n

k − r − li1 − li2 − · · · − lim − m

��
.

Finally, the cardinality of Ω is:

|Ω| =
��

n

k − r

��
.

Substituting these values into the Inclusion-Exclusion formula, we obtain the number of solutions to
the original equation under the given constraints:

|A1 ∩ A2 ∩ · · · ∩ An| =
��

n

k − r

��
−

n�

m=1
(−1)m−1 �

1≤i1<···<im≤n

��
n

k − r − li1 − li2 − · · · − lim − m

��
.

4.3 IEP and Euler’s Totient Function
Definition 4.3 (Euler’s Totient Function).
The Euler’s Totient function, denoted as φ(n), counts the number of positive integers x such that
1 ≤ x ≤ n and gcd(x, n) = 1. That is,

φ(n) = |{x | 1 ≤ x ≤ n, gcd(x, n) = 1}|
where gcd(x, n) denotes the greatest common divisor of x and n, and the set {x | 1 ≤ x ≤
n, gcd(x, n) = 1} contains all integers from 1 to n that are coprime with n.

Counting directly the integers that are coprime with n is not an efficient method for computing φ(n).
Instead, we use the inclusion-exclusion principle to derive a more efficient formula for φ(n).

Any positive integer n has a unique prime factorization of the form:
n = pα1

1 pα2
2 · · · pαm

m

where p1, p2, . . . , pm are distinct primes and α1, α2, . . . , αm are their respective multiplicities.
To use the inclusion-exclusion principle, we will use the fact that any number that is not coprime

with n has at least one factor other than 1 in common with n. So, consider the set of integers less
than or equal to n that have the factor pi in common with n, denoted by Ai. Therefore, the number of
integers that are coprime with n is given by:

φ(n) = n − |A1 ∪ A2 ∪ · · · ∪ Am|
Now, using the inclusion-exclusion principle, we can express the size of the union of these sets as:

|A1 ∪ A2 ∪ · · · ∪ Am| =
m�

k=1
(−1)k−1 �

1≤i1<i2<···<ik≤m

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik
|

where |Ai| is the number of integers divisible by pi, and the other terms account for intersections of the
sets.

Counting the Intersections:
• Single Sets |Ai1 |: The set Ai1 consists of all integers divisible by pi1 . The number of such integers

is:
|Ai1 | =

�
n

pi1

�
= n

pi1

where ⌊⌋ is the floor function, which counts the number of multiples of pi1 less than or equal to
n.

• Intersections of Two Sets |Ai1 ∩ Ai2 |: The intersection Ai1 ∩ Ai2 consists of integers divisible



by both pi1 and pi2 . Since pi1 and pi2 are distinct primes, we know that:
lcm(pi1 , pi2) = pi1pi2

Therefore, the number of elements in this intersection is:

|Ai1 ∩ Ai2 | =
�

n

pi1pi2

�
= n

pi1pi2

• Intersections of Three Sets |Ai1 ∩Ai2 ∩Ai3 |: The intersection Ai1 ∩Ai2 ∩Ai3 consists of integers
divisible by the least common multiple of pi1 , pi2 , pi3 . Since these are distinct primes, we have:

lcm(pi1 , pi2 , pi3) = pi1pi2pi3

The number of integers in this intersection is:

|Ai1 ∩ Ai2 ∩ Ai3 | =
�

n

pi1pi2pi3

�
= n

pi1pi2pi3

• General Case |Ai1 ∩ Ai2 ∩ · · · ∩ Aik
|: For any k-tuple (i1, i2, . . . , ik), the intersection Ai1 ∩ Ai2 ∩

· · · ∩ Aik
consists of integers divisible by the least common multiple of the primes pi1 , pi2 , . . . , pik

.
Since all pi1 , pi2 , . . . , pik

are distinct primes, we have:
lcm(pi1 , pi2 , . . . , pik

) = pi1pi2 . . . pik

The number of such integers is:

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik
| =

�
n

pi1pi2 . . . pik

�
= n

pi1pi2 . . . pik

Using the inclusion-exclusion principle, the final formula for φ(n) becomes:

φ(n) = n −
m�

i1=1

n

pi1

+
�

1≤i1<i2≤m

n

pi1pi2

−
�

1≤i1<i2<i3≤m

n

pi1pi2pi3

+ · · · + (−1)m−1 n

p1p2 . . . pm

= n


1 −

m�

i1=1

1
pi1

+
�

1≤i1<i2≤m

1
pi1pi2

−
�

1≤i1<i2<i3≤m

1
pi1pi2pi3

+ · · · + (−1)m−1 1
p1p2 . . . pm




= n

�
1 − 1

p1

� �
1 − 1

p2

�
· · ·

�
1 − 1

pm

�
= n

m�

k=1

�
1 − 1

pk

�
.

Example (Numerical example).
We begin by finding the prime factorization of 2024:

2024 = 23 × 11 × 23
Now, we apply the formula for Euler’s Totient Function:

φ(2024) = 2024 ×
�

1 − 1
2

�
×

�
1 − 1

11

�
×

�
1 − 1

23

�

We simplify each term:
1 − 1

2 = 1
2 , 1 − 1

11 = 10
11 , 1 − 1

23 = 22
23

Now, we compute:
φ(2024) = 2024 × 1

2 × 10
11 × 22

23
First, simplify step by step:

2024 × 1
2 = 1012

1012 × 10
11 = 920

920 × 22
23 = 880

Thus, the value of Euler’s Totient Function for 2024 is:
φ(2024) = 880

4.4 The Ménage Problem
The Ménage problem is a classical combinatorics problem that asks:



Given n married couples, how many ways can one arrange these n couples around a
circular table such that men and women alternate in seating, and no woman sits next to
her husband?

This problem was formulated in 1891 by Édouard Lucas. The first explicit formula for the problem
was published by Touchard in 1934, although it lacked a proof. In 1943, Kaplansky provided a proof
of Touchard’s formula. The formula for the number of valid arrangements, Mn, is:

Mn = 2(n!)
n�

k=0
(−1)k 2n

2n − k

�
2n − k

k

�
(n − k)!.

From the problem statement, we seek the number of alternating arrangements such that no couple is
seated together. This translates to finding the cardinality of the set |A1 ∩A2 ∩ · · ·∩An|, where Ai is the
set of configurations in which couple i is not seated together. Using the Inclusion-Exclusion Principle
(IEP), we have:

|A1 ∩ A2 ∩ · · · ∩ An| = |S| −
n�

k=1
(−1)k−1 �

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| ,

where Ai is the set of configurations in which couple i is seated together, and S is the set of all
alternating seating arrangements.

It is straightforward to show that |S| = 2(n!)2. This follows from the fact that women can occupy
either odd or even positions, resulting in 2 configurations. For each configuration, the women and men
can be independently arranged in n! ways, yielding 2(n!)2 total alternating arrangements.

Next, we determine the formula for: �

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| .

This requires analyzing the placement of k dominoes on a circular arrangement.
4.4.1 Placing k Identical, Non-Overlapping Dominoes on m Labeled Circular Positions

To analyze the circular case effectively, we first examine the simpler linear case. Consider k identical
dominoes:

,
which we aim to place on a linear grid of m labeled positions such that no two dominoes overlap.

Each domino occupies exactly two consecutive positions, and the goal is to compute the total number
of distinct arrangements.

Linear Grid Case For a linear grid of m labeled positions, we aim to compute Ak
m, the number

of ways to arrange k dominoes. Each domino occupies two positions, leaving m − 2k empty spaces.
These spaces are divided into k + 1 groups (before, between, and after the dominoes). The number of
arrangements corresponds to the non-negative integer solutions of:

x1 + x2 + · · · + xk+1 = m − 2k,

where xi ≥ 0 represents the empty positions in each segment. The solution is given by:

Ak
m =

�
m − k

k

�
.

Circular Grid Case For a circular arrangement, the positions form a closed loop. Each position can
be:

• Occupied by a domino paired with the previous position.
• Occupied by a domino paired with the next position.
• Unoccupied.
This introduces an additional challenge since the circular nature prevents a direct division of the

empty spaces into groups. To handle this, we fix one domino’s position (breaking the symmetry) and
analyze the remaining m − 2 positions linearly.



The number of ways to place k dominoes on a circular grid of m positions is:
W k

m = 2Ak−1
m−2 + Ak

m−1,

where Ak−1
m−2 accounts for configurations where the fixed domino is paired with the next position, and

Ak
m−1 accounts for configurations where the fixed domino is paired with the previous position.
Substituting Ak

m =
�

m−k
k

�
, we have:

W k
m = 2

�
m − 1 − k

k − 1

�
+

�
m − 1 − k

k

�
.

Simplifying further:

W k
m =

�
m − 1 − k

k − 1

�
+

�
m − k

k

�
.

Using the combinatorial identity: �
n

k − 1

�
+

�
n

k

�
=

�
n + 1

k

�
,

we rewrite:
W k

m =
�

k

m − k
+ 1

� �
m − k

k

�
.

Finally:

W k
m = m

m − k

�
m − k

k

�
.

Thus, the number of ways to place k identical, non-overlapping dominoes on m circular positions is:

W k
m = m

m − k

�
m − k

k

�
.

4.4.2 Solution of the Ménage Problem
Returning to the original formula: �

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| .

To arrange k couples around a circular table of size 2n:
• Choose k couples from n, which can be done in

�
n
k

�
ways.

• Arrange k couples as blocks (dominoes), multiplied by k!.
• Alternate starting with either a man or a woman (2 choices).
• Place the remaining (n−k) men and (n−k) women arbitrarily, yielding ((n−k)!)2 arrangements.
Thus:

�

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| = 2

�
n

k

�
k!((n − k)!)2W k

2n.

Simplifying: �

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik
| = 2(n!)(n − k)!W k

2n,

= 2(n!)(n − k)! 2n

2n − k

�
2n − k

k

�
.

Finally, the solution to the Ménage problem using IEP is:

|A1 ∩ A2 ∩ · · · ∩ An| = 2(n!)2 −
n�

k=1
(−1)k−12(n!)(n − k)! 2n

2n − k

�
2n − k

k

�
,

= 2(n!)
n�

k=0
(−1)k(n − k)! 2n

2n − k

�
2n − k

k

�
.



5. Bonferroni Inequalities and Inclusion-Exclusion Princi-
ple

Theorem 5.1 (Bonferroni Inequalities).
Let A1, A2, . . . , An be n sets. The Bonferroni inequalities are:

|A1 ∪ A2 ∪ · · · ∪ An| ≥
m�

k=1
(−1)k−1 �

1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik
| (if m is even)

|A1 ∪ A2 ∪ · · · ∪ An| ≤
m�

k=1
(−1)k−1 �

1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik
| (if m is odd.)

Proof. Exercise.


