
Lab numpy arrays and image manipulation

May 14, 2023

1 Lab 2: Matrix operations and image manipulation:
1. To begin, let us load the image into numpy. This can be done by using the imread()

function from the matplotlib library. This function allows numpy to read graphic files with
different extensions. The output is a two-dimensional array with the dimensions equal to
the dimensions of the image, and the values corresponding to the colors of the pixels. Here
we will work with a grayscale image, so the elements in the array will be integers ranging
from 0 to 255 in the numpy integer format uint8. Type in the following code to load the
file “fibonacci.jpg” into numpy: python from matplotlib import pyplot as plt
ImJPG = plt.imread('fibonacci.jpg') #you can get the image from the link
https://ydjemmada.github.io/fibonacci.jpg The array ImJPG is a two-dimensional
array of the type uint8 which contains values from 0 to 255 corresponding to the color of
each individual pixel in the image, where 0 corresponds to black and 255 to white. You can
visualize this array by printing it in the console:

print(ImJPG)#prints the array values
plt.imshow(ImJPG,cmap='gray')#shows the image

2. Use the shape attribute to check the dimensions of the obtained array ImJPG: python m,
n = ImJPG.shape

1. What are the dimensions of the image?

3. Check the type of the array ImJPG by using the dtype attribute: ImJPG.dtype The output
of the dtype attribute is a numpy data type.

4. Find the range of colors in the image by using the amin and amax functions and save
those elements as maxImJPG and minImJPG: python maxImJPG = np.amax(ImJPG)
minImJPG = np.amin(ImJPG)

5. Finally, display the image on the screen by using imshow: python plt.imshow(ImJPG,
cmap='gray') If you did everything correctly, you should see the image displayed on your
screen in a separate window.

6. To crop the image in numpy, we can select a subarray from the original array ImJPG. The
rows and columns we want to keep from the original array can be specified using indexing.
The following code will select the central part of the image leaving out 100 pixels from
the top and bottom, and 100 pixels on the left and 70 pixels on the right, and display
the result using matplotlib: python ImJPG_center = ImJPG[100:m-100, 100:n-70]
import matplotlib.pyplot as plt plt.imshow(ImJPG_center, cmap='gray')
plt.show() This will create a new figure window displaying the cropped image.

1

7. We can paste the selected part of the image into another image. To do this, create a zero
matrix using the command:

ImJPG_border = np.zeros((m, n), dtype=np.uint8)

Then paste the preselected matrix ImJPG_center into matrix ImJPG_border and display
the image:

ImJPG_border[100:m-100, 100:n-70] = ImJPG_center
plt.figure()
plt.imshow(ImJPG_border, cmap='gray')

Notice the use of the data type np.uint8. It is necessary to use this data type because by
default the array will be of the type float, and imshow command does not work correctly with
this type of array.

8. To flip the image vertically using NumPy, we can use the flipud function::
python ImJPG_vertflip = np.flipud(ImJPG) plt.imshow(ImJPG_vertflip,
cmap='gray') This will create a new array ImJPG_vertflip that is a vertically flipped
version of the original array ImJPG.

9. To transpose the matrix using NumPy, we can use the transpose attribute: python
ImJPG_transpose = ImJPG.transpose() plt.imshow(ImJPG_transpose,
cmap='gray')

10. To flip the image horizontally using NumPy, we can combine the transpose attribute and the
fliplr function:

ImJPG_horflip = np.fliplr(ImJPG)
plt.imshow(ImJPG_horflip, cmap='gray')
plt.show()

11. To rotate the image by 90 degrees using NumPy, we can use the rot90 function: python
ImJPG90 = np.rot90(ImJPG) plt.imshow(ImJPG90, cmap='gray')

12. Try running the following numpy commands: python ImJPG_inv = 255-ImJPG
plt.imshow(ImJPG_inv) plt.show() Display the resulting image using matplotlib’s
imshow function in a new figure window. Note that the constant 255 is subtracted from the
array ImJPG, which mathematically does not make sense. However, in numpy, the constant
255 is treated as an array of the same size as ImJPG with all the elements equal to 255.
Explain what happened to the image.

13. It is also easy to lighten or darken images using matrix addition. For instance, the following
code will create a darker image: python ImJPG_dark=np.clip(np.array(ImJPG,
dtype='int16') - 50, 0, 255) plt.imshow(ImJPG_dark,cmap='gray')
plt.show() You can darken the image even more by changing the constant to a number
larger than 50. Note that this command can technically make some of the elements of
the array to become negative. However, because the ImJPG array type is int16, with the
function clip those elements are automatically rounded to zero.

14. Let us create Andy Warhol style art with the image provided. To do so we will arrange
four copies of the image into a 2×2 matrix. For the top left corner we will take the
unaltered image. For the top right corner we will darken the image by 50 shades of
gray. For the bottom left corner, lighten the image by 100 shades of gray, and finally, for

2

the bottom right corner, lighten the image by 50 shades of gray. Then we will arrange
the images together in one larger matrix using numpy’s concatenation function. Finally,
display the resulting block matrix as a single image using matplotlib’s imshow func-
tion. python im1 = ImJPG im2 = np.clip(np.array(ImJPG, dtype='int16')
- 50, 0, 255) im3 = np.clip(np.array(ImJPG, dtype='int16') + 100,
0, 255) im4 = np.clip(np.array(ImJPG, dtype='int16') + 50, 0, 255)
row1 = np.concatenate((im1, im2), axis=1) row2 = np.concatenate((im3,
im4), axis=1) ImJPG_warhol = np.concatenate((row1, row2), axis=0)
plt.imshow(ImJPG_warhol,cmap='gray') plt.show()

15. Numpy has several functions which allow one to round any number to the nearest integer or
a decimal fraction with a given number of digits after the decimal point. Those functions
include: floor which rounds the number towards negative infinity (to the smaller value), ceil
which rounds towards positive infinity (to the larger value), round which rounds towards the
nearest decimal or integer, and fix which rounds towards zero.

A naive way to obtain black and white conversion of the image can be accomplished by making
all the gray shades which are darker or equal to a medium gray (described by a value 128)
to appear as a complete black, and all the shades of gray which are lighter than this medium
gray to appear as white. This can be done, for instance, by using the code:

ImJPG_bw = np.uint8(255*np.floor(ImJPG/128))
plt.imshow(ImJPG_bw, cmap='gray')
plt.show()

Note that this conversion to black and white results in a loss of many details of the image.
There are possibilities to create black and white conversions without losing so many details.
Also, notice the function np.uint8 used to convert the result back to the integer format.

16. Write code to reduce the number of shades in the image from 256 to 8 using the round
function. Save the resulting array as ‘ImJPG8’ and display it in a separate window. python
ImJPG8 = np.round(ImJPG / 32) plt.imshow(ImJPG8.astype('uint8'),
cmap='gray') plt.show()

17. Increase the contrast of the image by changing the range of possible shades of gray. One way
to do this is to scalar multiply the array by a constant. Use the following code:

ImJPG_HighContrast = np.clip((1.25 * ImJPG),0,255)
plt.imshow(ImJPG_HighContrast, cmap='gray')
plt.show()

Observe the result by displaying the image. You can manipulate the contrast by increasing
or decreasing the constant (we use 1.25 in this case). Note that this operation may cause
some elements of the array to become outside the 0-255 range, potentially leading to data
loss. Save the resulting array as ‘HighContrast’.

18. Apply gamma correction to the image using the following code: python
ImJPG_Gamma05 = np.clip(ImJPG** 0.95,0,255) plt.imshow(ImJPG_Gamma05,
cmap='gray') plt.show() ImJPG_Gamma15 = np.clip(ImJPG ** 1.15,0,255)
plt.imshow(ImJPG_Gamma15, cmap='gray') plt.show() Observe the results by
displaying the images. The above code will produce two images, one with gamma equal to
0.95 (ImJPG_Gamma05) and one with gamma equal to 1.05 (ImJPG_Gamma15). Gamma

3

correction is a nonlinear operation that can be used to adjust the brightness and contrast of
an image.

[]: from matplotlib import pyplot as plt
import numpy as np
ImJPG = plt.imread('fibonacci.jpg')
#ImJPG.dtype
print(ImJPG)
plt.imshow(ImJPG,cmap='gray')
plt.show()
m, n = ImJPG.shape
ImJPG_center = ImJPG[100:m-100, 100:n-70]
import matplotlib.pyplot as plt
plt.imshow(ImJPG_center, cmap='gray')
plt.show()
ImJPG_border = np.zeros((m, n), dtype=np.uint8)
ImJPG_border[100:m-100, 100:n-70] = ImJPG_center
plt.figure()
plt.imshow(ImJPG_border, cmap='gray')
ImJPG_vertflip = np.flipud(ImJPG)
plt.show()
plt.imshow(ImJPG_vertflip, cmap='gray')
ImJPG_transpose = ImJPG.transpose()
plt.show()
plt.imshow(ImJPG_transpose,cmap='gray')
plt.show()
ImJPG_horflip = np.fliplr(ImJPG)
plt.imshow(ImJPG_horflip, cmap='gray')
plt.show()
ImJPG_inv = 255-ImJPG
plt.imshow(ImJPG_inv,cmap='gray')
plt.show()
ImJPG_dark=np.clip(np.array(ImJPG, dtype='int16') - 50, 0, 255)
plt.imshow(ImJPG_dark,cmap='gray')
plt.show()
im1 = ImJPG
im2 = np.clip(np.array(ImJPG, dtype='int16') - 50, 0, 255)
im3 = np.clip(np.array(ImJPG, dtype='int16') + 100, 0, 255)
im4 = np.clip(np.array(ImJPG, dtype='int16') + 50, 0, 255)
row1 = np.concatenate((im1, im2), axis=1)
row2 = np.concatenate((im3, im4), axis=1)
ImJPG_warhol = np.concatenate((row1, row2), axis=0)
plt.imshow(ImJPG_warhol,cmap='gray')
plt.show()
ImJPG_bw = np.uint8(255*np.floor(ImJPG/128))
plt.imshow(ImJPG_bw, cmap='gray')
plt.show()

4

ImJPG8 = np.round(ImJPG / 32)
plt.imshow(ImJPG8.astype('uint8'), cmap='gray')
plt.show()
ImJPG_HighContrast = np.clip((1.25 * ImJPG),0,255)
plt.imshow(ImJPG_HighContrast, cmap='gray')
plt.show()
ImJPG_Gamma05 = np.clip(ImJPG** 0.95,0,255)
plt.imshow(ImJPG_Gamma05, cmap='gray')
plt.show()
ImJPG_Gamma15 = np.clip(ImJPG ** 1.15,0,255)
plt.imshow(ImJPG_Gamma15, cmap='gray')
plt.show()

5

	Lab 2: Matrix operations and image manipulation:

