Worksheet 3: Introduction to graph theory

Exercise 1:

For each of the sequences, decide if it represents the degree sequence of a simple graph.

Answers to Exercise 1:

- 1. 1, 2, 3, 3, 5 No. The sum of the degrees is 14, which is even, but the highest degree (5) is greater than the number of vertices minus one (4). This violates the Handshaking Lemma.
- 2. 2, 3, 4, 5, 3, 4 No. The sum of the degrees is 21, which is odd. This violates the Handshaking Lemma.
- 3. 2, 2, 2 Yes. The sum of the degrees is 6, which is even, and it is possible to construct a simple graph with this degree sequence (e.g., a triangle).

4. 5, 3, 5, 1, 2, 2 No, We have two vertices of degree 5 so they are adjacents to all the others, therefoe there is no vertex with degree 1, at least 2.

Exercise 2:

Show that the number of K_3 subgraphs in a complete graph K_n with $n \ge 3$ is equal to $\frac{n(n-1)(n-2)}{6}$.

Answers to Exercise 2:

A K_3 subgraph is a triangle, which is formed by selecting 3 vertices out of n. The number of ways to choose 3 vertices from n is given by the combination formula:

$$\binom{n}{3} = \frac{n(n-1)(n-2)}{6}.$$

Therefore, the number of K_3 subgraphs in K_n is $\frac{n(n-1)(n-2)}{6}$.

Exercise 3:

Let G be a graph with vertices $V = \{2, 3, 4, 5, 11, 12, 13, 14\}$, and two vertices u and v are adjacent if gcd(u, v) = 1.

Answers to Exercise 3:

1. **Draw** G: The graph G will have edges between vertices that are coprime. Below is a representation of the graph:

- 2. Find $e(G), \delta(G), \Delta(G), N(4), N[3]$, and d(13):
 - $e(G) = \frac{1}{2} \sum_{v \in V} deg(v) = 21.$

- $\delta(G) = 3.$
- $\Delta(G) = 7.$
- $N(4) = \{3, 5, 11, 13\}.$
- $N[3] = \{2, 3, 4, 5, 11, 13, 14\}.$
- d(13) = 7.

Exercise 4:

Does there exist a simple graph of order 5, such that there is a vertex of degree $\Delta(G) = 4$ and a vertex of degree $\delta(G) = 1$? What about two vertices of degree $\Delta(G) = 4$ and a vertex with degree $\delta(G) = 1$?

Answers to Exercise 4:

1. Yes, such a graph exists. For example, consider a star graph with one central vertex connected to 4 other vertices. The central vertex has degree 4, and the other vertices have degree 1. Below is the graph:

2. No, such a graph does not exist. If there are two vertices of degree 4 in a graph of order 5, they must be connected to all other vertices, including each other. This would leave no vertex with degree 1.

Exercise 17:

Suppose that G is a k-regular simple graph of order n and size m. Find a relation between k, n, and m.

Answers to Exercise 17:

In a k-regular graph, every vertex has degree k. By the Handshaking Lemma, the sum of the degrees of all vertices is equal to twice the number of edges. Therefore:

$$\sum_{v \in V} \deg(v) = 2m.$$

Since G is k-regular, the sum of the degrees is $n \cdot k$. Thus:

 $n \cdot k = 2m.$

The relation between k, n, and m is:

$$m = \frac{n \cdot k}{2}.$$

Exercise 18:

In any graph with no K_3 (triangle), show that $n \ge \delta(G) + \Delta(G)$, where n is the order of the graph, $\delta(G)$ is the minimum degree, and $\Delta(G)$ is the maximum degree.

Answers to Exercise 18:

Let x be a vertex with degree $\Delta(G)$, and let y be a neighbor of x. Since G has no triangles, $N(x) - \{y\}$ and $N(y) - \{x\}$ are disjoint. Thus:

$$|N[x]\cup N[y]|=\Delta(G)+1+d(y)-1=\Delta(G)+d(y).$$

Because $|N[x] \cup N[y]| \le n$, we have:

 $\Delta(G) + d(y) \le n.$

Since $d(y) \ge \delta(G)$, it follows that:

 $n \ge \Delta(G) + \delta(G).$

Thus, $n \ge \Delta(G) + \delta(G)$ holds for any graph with no K_3 .

Exercise 5:

Let G be a simple graph. Show that if $P = v_1 \dots v_l$ is a longest path in G, then all the neighbors of v_1 are in $\{v_2, \dots, v_l\}$.

Answers to Exercise 5:

Suppose there exists a neighbor u of v_1 that is not in $\{v_2, \ldots, v_l\}$. Then we could extend the path P by adding u at the beginning, resulting in a longer path u, v_1, \ldots, v_l . This contradicts the assumption that P is the longest path. Therefore, all neighbors of v_1 must be in $\{v_2, \ldots, v_l\}$.