Exercises with solutions ALGEBRA Dr. Yahia Djemmada

Worksheet 2: Sets and Maps

Answers to Exercise 9:

1. f1 not injective and not surjective.
2. f5 not injective and not surjective.
3. f3 bijective and f5 '(y) =In (-1 + I +y)

. f1 bijective and f; *(y) = =

=~

a

. f5 not injective and surjective Vz € R, if we take (z,y) = (2/2,2/2) = f(x,y) = z.

=2

. fe bijective and f~1(s,t) = (£, 554).

=

fr(z,y) = (v +y,2y),

e Injective (One-to-One): The map f7 is injective if

V(a1,b1), (az,b2) € R?; f(a1,b1) = f(ag, ba) = (a1,b1) = (az,b2)

fla1,b1) = f(az,b2) <= (a1 +b1,a1b1) = (a2 + bz, azbs)
by = b 1

— a1 + 01 as+by (1)

a1b1 = Clgbg (2)
— (a1 + b1)2 = (az + b2)2
< a? +b? +2a1by = a3 + b3 + 2aby
<~ a% T b% — 2a9by = a% ol bg — 2a1b1
T () 02 112 2a1b; = a2 + B2 — 2asbs

E——¢ (a1 = b1)2 = ((12 — b2)2
<~ (a1 = bl) = (Clg = bg) or (a1 = bl) = (b2 = ag) (3)

So by adding (1) and both equations of (3), we get

2a1 = 2a9 or 2a; = 2bsy

<= a3 =as or a; = by
replace in (1
=N (1)

a1 = a2 and bl :b2 or aq :bQ and b1 = ag;

However, it’s possible that (a1 = bs and by = a3) <= (a1,b1) # (as2,b2). So, the function is not
injective.

e Surjective (Onto): The map f7 If V(c,d) € R?,3(a,b) € R?; f(a,b) = (c,d).
Consider (¢, d) in the codomain and find (a,b) such that f(a,b) = (¢, d).

at+b =c a =c—b a =c—b a =c—b
< < <
ab =d ab =d (c=bb =d b +cb—d =0

a =c—b
— h = —c++/c2—4d
2

a = L Ve?—4d
— 7 —2
h = —c++c2—4d
- —2

So to find (a,b), ¢ and d should satisfy both the inequality ¢* — 4d > 0 for arbitrary ¢ and d. This
might not be possible (for example if ¢ = d = 1), and hence the function is not surjective.

e Bijective: A function is bijective if it is both injective and surjective. Since the given function is not
injective or surjective, it is not bijective.
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8. fs(n,p) =2"(2p+1),

e Let’s prove that fg is injective.
Consider two pairs (n, p) and (m, q) in N? such that fs(n,p) = fs(m,q). Then we have:

2"(2p+1) =2"(2¢ + 1).

Assume, for example, that n > m. We can rewrite this as:

2" 2p+1) =2¢ + 1.

If n # m, the left term is even, and the right term is odd, which is a contradiction. So, we must have
n = m. Thus, we obtain:

2p+1=2q+1,

which implies p = ¢. In conclusion, we have shown that (n,p) = (m,q), and therefore, fgs is injective.

e Next, let’s prove that fg is surjective. Take any [ € N. We can write [ as a product of prime factors:

1=2"p3% . ..po7,
where p; for ¢ > 2 are odd prime numbers. Since the product of odd numbers is also odd, we can
express po?...p%" as 2p + 1, where p € N. Therefore, we have [ = 2"(2p+ 1) = fs(n,p), which means
that f is surjective.

e Thus, fs is a bijective function, as it is both injective and surjective. To obtain fg , we factorize
any element m € N into its prime factors. We then determine n as the exponent of 2 in the prime
factorization, and p as the quotient of the product of the odd primes divided by 2.

Answers to Exercise 10:

1. Injectivity (One-to-One):

Let’s assume that x; and xo are two distinct real numbers. This implies:

Fr1) = —2  and  f(z) = ——2

V1+a3 1+ a3

It’s clear that 1 and x5 should be of the same sign since f(z) has the same sign as . We can then proceed
as follows:

I L2

Vita?  J1+a2
> 22(1 + 23) = 22(1 + z?)

— 1l =13

<= x1 =22 (because the sign of 7 is the same as )

This shows that for all z1,29 € R, if f(z1) = f(x2), then x1 = 5. Therefore, f(z) is injective.
Surjectivity (Onto):

To determine whether f(x) is surjective, we need to check if, for all y € R, there exists an « € R such that
f(x) =y. We can proceed as follows:
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X
Winn-al A At AT

=’ (1-y*) =y

|yl
= |z| = —Z—
ol = 2t
== £
1—192

So, the function f~ exists only if —1 < y < 1. Therefore, there exist values of y for which there are no
corresponding values of x that satisfy f(z) = y. This means that f(z) is not surjective.

2. e Let’s determine f~1([1, +o0[):

FH[L +o0]) = {z € R | f(2) € A}
We have:

x
r)EA = flz)>1 &= ——— < 2°>1+2°
(@) (@) —
However, this condition is impossible for all values of x. Therefore,
FH[, +oo]) = 0.
e Let’s determine f([1,2]):

f(IL2) = {f(z) eR |z € [1,2]}

From the previous result, we know that f is injective, and it’s strictly monotonic on R. Since 1 < 2
and f(1) = % < f(2) = %, we can conclude that f is strictly decreasing. Therefore,

1 2
1,2) = [f(1), f(2)] = | —=, —=].
71.2) = 0. 5@) = |25, 2]
e Let’s determine f([—2,2]):
For the same reasons as the previous question, we have:

£(=2.2) = [£(-2), ()] = [

Sl

:|
’ 5 -
3. Bi‘lectivity Of ’|] 171[:

From the first question, we’ve established injectivity. The corestriction of f satisfies that for all y €] — 1, 1],
there exists x € R such that f(x) = y. Therefore, f is bijective, and its inverse is f~!(y) = %
—y

We can easily verify that f(f~1(y)) = y:

“10,0) — Y _ \/i7 — Yy —
FF () f(@) \/1+% i Y

4. Let g be the restriction of f|l=" to ] —1,1].

For n = 2: z
@ (z) = go g(z) = g(g(z)) = —F2 T
97 (x) = gog(r) = g(9(x)) \/1+ = Vit
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For n = 3:
a8

(a ) = [©] [e] X)) = ——.
g (z) =gogog(x) ViEr

Let’s suppose by induction on n that for all n > 1:

(M (z) = g0 g0 oalz) = — 5
g™ (x)=gog g() Vg

n times

Let’s show that ¢(**1(z) = z

1+ (n+1)z?’

R

This proves the result.

Answers to Exercise 11:

See the page 43 of the book.

Answers to Exercise 12:

1. e A={},4} f71(A):
To find the preimage of set A under the function f, you need to find all values in the domain such
that f(n) is in set A.

F7HA) = {neN\{1}f(n) € A} <= [71(4) = {n e N\{1}|f(n) = % and f(n) = 4}

Solving the following equations will gives the values of n for which f(n) belongs to set A:

2 2
n“—m+2 ::l and nq:n+2 =4

n—1 3 =1

— For f(n) = 3
n2—n+2_ 1

1 =3 & 3n? —4n +7=0 <= no solutions in N\{1}.
W —

— For f(n) =4

n?—n+2 9

=4 <— n“"—-5n+6=0 <= n=2and n=3.

n—1
Therefore, f~1(A) = {2,3}.
e B=]—00,—1]

F7HB) = 1 (=00, -1))
={neN\{1}| f(n) € B}

= fneN\ (1| T2

={neN\{1} |n? < -1}

= () (there’s no positive n? less than — 1)

<-1}

e C={neN\{1}||n®-—n+1|<1}




Exercises with solutions ALGEBRA Dr. Yahia Djemmada

We know that Vn > 2,n(n? — 1) > 0, therefore n® —n +1 > 1.
This means C' = ). Then, f(C) = f(0) = 0.
2. Let H={z € Q|ﬁ(m) € N},
f7HH) = {n e N\{1}|f(n) € H}.
So we should find n such that f(n) € H,

fm)eH — ——— €N
) ) = B
1
<= eN
n2n—11,1-1-2 _E(nZn—Izl-ﬁ-Q)
<= L eN
n+ 2 —E(n+ -25)
1
<= eN
n+%_n_E(nzl)
n—1
<= eN
2-(n-1)E(2)

It’s clear if n > 3 then E(-25) = 0, therefore for n > 3:

n—1 n—1
=~ €N —
2-(n-1E(GZ)

n—1

€N <« 2dividesn—1 < n=2k+1.

Now if 2 <n < 3:
e Forn=2wehave2— (2—1)E(z%4)=2-2=0s0 Wié(i) is not defined.
n—1
e For n =3 we have f(3) =4 so f(3) — E(f(3)) =4 —4 =0 then m is not defined also;

So we deduce that f~1(H) = {2k + 1|k € N, k > 2}.

Answers to Exercise 14:

Let X,Y and Z be three sets and let f: X — Y and g: Y — Z be two maps.

e If go f is injective then f is injective.
Let 2,2’ € X such that f(z) = f(2').

fl@) = fa) T g(f (@) = g(f(2'))
— gof(x)=go f(z')
gof iigj;ctive = .’IJI.

So Vz,2' € X, f(x) = f(2') = x = a’. Therefore, if g o f is injective then f is injective.

e If go f is injective and f is surjective then g injective. Let y,3" € F such that g(y) = g(y’'); to proof that
g is injective we need to show that y = 3. Hence we know that f is surjective so

9(y) = 9(v/) =¥ 30,2’ € X; f(z) =y, £(&) = ¥/ & 9(f(x)) = g(f())

PN Jz,2’ € X;g0 f(x) =go f(z)

gglj r =z
BT f(@) = 1)
— y=y.

Therefore g is injective.
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e If go f is surjective then g is surjective. Let z € Z, hence g o f is surjective, so
dr e X;go0 f(x) =2 <= e X;g9(f(x)) =z
el = Ve ZIy eV, Iz e X;g(y) = 2& f(x) =y;
Therefore g is surjective.
e If go f is surjective and g is injective then f is surjective. Let y € Y,

g is map

yeY = "gy)eZ
90l 30 ¢ X go f(x) = gy)

&L 3 e X, 9(f(2) = g(y)

L 35 ¢ X, flz)=y.
Then f is surjective.

e For any subset A of X, A C f~1(f(4)).

Let € A = f(x) € f(A) (from definition of image of a set)
— z € f7H(f(A) (from definition of preimage of a set)

That’s means A C f~1(f(A)).
e f is injective if and only if for any subset 4 of X, f~1(f(A)) C A.
= ): f injective = f71(f(A))C A

Let z € f71(f(A)) = 32’ € 4; f(z) = f(2)& f(2) € f(A) (from definition of preimage of a set

f inj r =1
— x € A.

<) f7Yf(A)) Cc A = f injective. Let x,2’ € X such that f(z) = f(2'), and let A = {z} C X. So

1) = fqah) = @ T (p@)) = e ) 2B ded = a=v
Then f is injective.
e For any subset B of Y , f(f~1(B)) C B.

Let y € f(f%(B)) = 3z € f1(B)&f(x) =y (from definition of image of a set)
= f(z) € B& f(z) =y (from definition of preimage of a set)
<~ y€B.

Then f(f~1(B)) C B.
e f is surjective if and only if for any subset B of Y, B C f(f~*(B)).
= ): f surjective = B C f(f 1(B))
Let y e B Loy dz e X;y= f(x) e B
= z¢€ f(B)
= f(z) € f(f71(B)) = ye f(f7(B)).
<= ): BC f(f~Y(B)) = f surjective. Let y € Y, and let B = {y} C Y. From the hypothesis we have:
BcC f(f71(B)) = yef(f'(B) = VyeY,3re fT(B)CX;f(z) =y

Then f is surjective.




