Chapter 4: Integer Partitions

1. Introduction to Integer Partitions

Definition 1.1 (Integer Partition).

A **partition** of a non-negative integer n is a non-increasing sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$ such that

and

$$\sum_{i=1}^{k} \lambda_i := \lambda_1 + \lambda_2 + \dots + \lambda_k = n$$

 $\lambda_1 > \lambda_2 > \cdots > \lambda_k > 0$

The integers λ_i are called the **parts** of the partition. We write $\lambda \vdash n$ to denote that λ is a partition of n. The number of parts is k.

The number of distinct partitions of n is denoted by p(n). By convention, p(0) = 1 (representing the empty partition, where k = 0).

Example.

For n = 4, p(4) = 5. The partitions are: (4), (3,1), (2,2), (2,1,1), (1,1,1,1).

Proposition 1.2.

The number of partitions of n, p(n), is equal to the number of non-negative integer solutions (m_1, m_2, \ldots, m_n) to the equation:

 $1 \cdot m_1 + 2 \cdot m_2 + \dots + n \cdot m_n = n$, where $m_i \ge 0$ for all i.

Here, m_i represents the number of times the integer *i* appears as a part in the partition.

2. Visualizing Partitions: Ferrers Diagrams

Definition 2.1 (Ferrers Diagram).

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \vdash n$ can be visualized using a **Ferrers diagram** (or Young diagram). It consists of k rows of boxes (or dots), where the *i*-th row has λ_i boxes. The rows are left-aligned.

Example.

The partition (5, 3, 3, 1) of 12 can be represented.

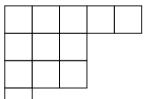


Figure 5: A representation for the partition (5,3,3,1).

Definition 2.2 (Conjugate Partition).

The **conjugate** of a partition λ , denoted λ' , is the partition whose Ferrers diagram is obtained by transposing the Ferrers diagram of λ (i.e., swapping rows and columns).

Example.

The conjugate of the partition $\lambda = (5, 3, 3, 1)$ of 12 is $\lambda' = (4, 3, 3, 1, 1)$, and can be represented.

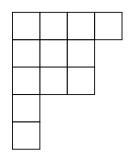


Figure 6: A representation for the partition (4,3,3,1,1).

3. Generating Functions for Partitions

The generating function for p(n) is $P(x) = \sum_{n=0}^{\infty} p(n)x^n$, where the coefficient p(n) represent the number of partitions of n.

Theorem 3.1 (Euler's Generating Function for p(n)).

$$P(x) := \sum_{n=0}^{\infty} p(n)x^n = (1 + x + x^2 + \dots)(1 + x^2 + x^4 + \dots)(1 + x^3 + x^6 + \dots) \dots = \prod_{i=1}^{\infty} \frac{1}{1 - x^i}$$

4. Restricted Partitions and Euler's Partition Theorem

4.1 Partitions into Exactly k Parts

Definition 4.1.

Let p(n, k) denote the number of partitions of n into exactly k parts.

Example.

For n = 5, k = 2: partitions are (4, 1), (3, 2). So p(5, 2) = 2.

Proposition 4.2 (Recurrence for p(n, k)).

For
$$n, k \ge 1$$
: $p(n,k) = p(n-k,k-1) + p(n-k,k) = p(n-1,k-1) + p(n-k,k) = \sum_{i=1}^{\min(k,n-k)} p(n-k,i)$.

The table below lists p(n, k):

$n \backslash k$									
0	1	0	0	0	0	0	0	0	0
$\frac{1}{2}$	0	1	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0
3	0	1	1	1	0	0	0	0	0
4	0	1	2	1	1	0	0	0	0
$-3 \\ 4 \\ 5 \\ 6$	0	1	2	2	1	1	0	0	0
6	0	1	3	3	2	1	1	0	0

Theorem 4.3.

The number of partitions of n into k parts is equal to the number of partitions of n where the largest part is k.

4.1.1 Partitions into at most k Parts

Definition 4.4.

Let $p_{\leq k}(n)$ denote the number "partitions of n with at most k parts."

Example.

Let n = 5 and k = 2. We are looking for partitions of 5 with at most 2 parts.

- Partitions with exactly 1 part (j = 1): (5). There is p(5, 1) = 1 such partition.
- Partitions with exactly 2 parts (j = 2): (4,1), (3,2). There are p(5,2) = 2 such partitions.

So, $p_{\leq 2}(5) = p(5,1) + p(5,2) = 1 + 2 = 3.$

Proposition 4.5.

The function $p_{\leq k}(n)$ (counting partitions of n into at most k parts) has the following properties: 1. For $n \geq 0$:

$$p_{\leq k}(n) = \sum_{j=0}^{k} p(n,j)$$

2. For $k \ge 1$ and $n \ge 0$:

$$p(n,k) = p_{\leq k}(n) - p_{\leq (k-1)}(n)$$

3. If $k \ge n$:

$$p_{\leq k}(n) = p(n)$$

4.1.2 Generating function of $p_{\leq k}(n)$ and p(n,k)

Theorem 4.6 (Generating Functions by Number of Parts).

Let $p_{\leq k}(n)$ be the number of partitions of n into at most k positive parts, and let p(n,k) be the number of partitions of n into exactly k positive parts. Their respective ordinary generating functions are:

1. For partitions into at most k parts:

$$P_{\leq k}(x) = \sum_{n=0}^{\infty} p_{\leq k}(n) x^n = \prod_{i=1}^{k} \frac{1}{1 - x^i}$$

2. For partitions into exactly k parts:

$$P_k(x) = \sum_{n=k}^{\infty} p(n,k) x^n = \prod_{i=1}^k \frac{x^k}{1-x^i}$$

(The sum for $P_k(x)$ starts at n = k as n must be at least k to have k positive parts.)

4.2 General Approach to Restricted Partitions

Generating functions can be adapted to count partitions with various restrictions. If a part j can appear s_1 or s_2 or ... s_m times, its factor in the generating function is $(x^{js_1} + x^{js_2} + \cdots + x^{js_m})$. The

overall generating function is the product of these factors.

4.2.1 Partitions into Distinct Parts and Odd Parts

Example (Generating Function for Partitions into Distinct Parts). Let $p_d(n)$ be the number of partitions of n where all parts are distinct. Each part k can appear 0 or 1 time. Factor for part k: $(1 + x^k)$. Generating function: $P_d(x) = \prod_{k=1}^{\infty} (1 + x^k)$.

Example (Generating Function for Partitions into Odd Parts). Let $p_o(n)$ be the number of partitions of n where all parts are odd. Only odd parts j = 2k - 1 are allowed, appearing any number of times. Factor for odd part j: $\frac{1}{1-x^j}$. Generating function: $P_o(x) = \prod_{k=1}^{\infty} \frac{1}{1-x^{2k-1}}$. Theorem 4.7 (Euler's Partition Theorem, 1748).

The number of partitions of n into distinct parts equals the number of partitions of n into odd parts: $p_d(n) = p_o(n)$ for all $n \ge 0$.

4.2.2 Further Examples of Restricted Partitions

Example (Partitions where the part '2' appears at most once).

Let q(n) be the number of such partitions. Generating function: $Q(x) = (1 + x^2) \prod_{k \neq 2, k \geq 1} \frac{1}{1 - x^k} = (1 - x^4)P(x)$. So, q(n) = p(n) - p(n-4) (with p(j) = 0 if j < 0).

Example (Partitions where each part appears at most twice).

Let r(n) be the number of such partitions. Factor for part k: $(1 + x^k + x^{2k})$. Generating function: $R(x) = \prod_{k=1}^{\infty} (1 + x^k + x^{2k}) = \prod_{k=1}^{\infty} \frac{1 - x^{3k}}{1 - x^k} = \frac{P(x)}{P(x^3)}.$

5. Exercises

Exercise.

List partitions of n = 6. Verify $p_d(6) = p_o(6)$. Calculate p(6,3) using its recurrence.

Exercise.

Draw the Ferrers diagram for (5, 2, 2) and find its conjugate.

Exercise.

Write the generating function for partitions where all parts are ≥ 2 and distinct.

40

Appendix A: Ordinary and Exponential Generating Functions

Definition .1 (Generating Function).

The **Generating Function** for an infinite sequence $\{a_n\}_{n=0}^{\infty} = (a_0, a_1, a_2, ...)$ is the formal power series:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

In this series, the coefficient a_n is the *n*-th term of the sequence, and the exponent *n* in x^n indicates its position. This series is often represented by a *compact expression*, and *expanding* this expression generate a power series having the terms of the sequence as coefficients.

Example.

Consider the sequence (1, 1, 1, 1, ...). Its generating function can be given by the compact expression $\frac{1}{1-x}$. When we expands this expression as a power series, we get:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$$

The coefficients of this expansion are 1, 1, 1, 1, ..., which are exactly the terms of our original sequence.

Definition .2 (Ordinary and Exponential Generating Function). Given a sequence $(a_n)_{n\geq 0}$,

• The Ordinary generating function (OGF) is the formal power series:

$$A(x) = \sum_{n=0}^{\infty} a_n x^n.$$

• The Exponential generating function (EGF) is the formal power series:

$$A(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$$

Definition .3 (Mixed Generating Function).

Given a double sequence $(a_{n,k})_{n,k\geq 0}$, its mixed ordinary-exponential generating function is:

$$A(x,y) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{n,k} x^n \frac{y^k}{k!}.$$

Theorem .4 (Generating Function for Constant and Linear Sequences). Let $a_n = 1$ for all $n \ge 0$. Then:

OGF:
$$\sum_{\substack{n=0\\\infty \ \infty \ x^n}}^{\infty} x^n = \frac{1}{1-x}$$

EGF:
$$\sum_{n=0}^{\infty} \frac{a}{n!} = e^x$$

Let $a_n = n$. Then:

OGF:
$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}$$

EGF:
$$\sum_{n=0}^{\infty} \frac{nx^n}{n!} = xe^x$$

41

Theorem .5 (Generating Function of Fibonacci Numbers). Let $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. The generating function of the Fibonacci sequence is:

$$F(x) = \sum_{n=0}^{\infty} F_n x^n = \frac{x}{1 - x - x^2}$$

42