
Chapter 4: Integer Partitions

1. Introduction to Integer Partitions
Definition 1.1 (Integer Partition).
A partition of a non-negative integer n is a non-increasing sequence of positive integers λ =
(λ1, λ2, . . . , λk) such that

λ1 ≥ λ2 ≥ · · · ≥ λk > 0
and

kX

i=1
λi := λ1 + λ2 + · · · + λk = n.

The integers λi are called the parts of the partition. We write λ ⊢ n to denote that λ is a partition
of n. The number of parts is k.

The number of distinct partitions of n is denoted by p(n). By convention, p(0) = 1 (representing
the empty partition, where k = 0).

Example.
For n = 4, p(4) = 5. The partitions are: (4), (3,1), (2,2), (2,1,1), (1,1,1,1).

Proposition 1.2.
The number of partitions of n, p(n), is equal to the number of non-negative integer solutions
(m1, m2, . . . , mn) to the equation:

1 · m1 + 2 · m2 + · · · + n · mn = n, where mi ≥ 0 for all i.

Here, mi represents the number of times the integer i appears as a part in the partition.

2. Visualizing Partitions: Ferrers Diagrams
Definition 2.1 (Ferrers Diagram).
A partition λ = (λ1, λ2, . . . , λk) ⊢ n can be visualized using a Ferrers diagram (or Young diagram).
It consists of k rows of boxes (or dots), where the i-th row has λi boxes. The rows are left-aligned.

Example.
The partition (5, 3, 3, 1) of 12 can be represented.

Figure 5: A representation for the partition (5,3,3,1).

Definition 2.2 (Conjugate Partition).
The conjugate of a partition λ, denoted λ′, is the partition whose Ferrers diagram is obtained by
transposing the Ferrers diagram of λ (i.e., swapping rows and columns).

Example.
The conjugate of the partition λ = (5, 3, 3, 1) of 12 is λ′ = (4, 3, 3, 1, 1), and can be represented.
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Figure 6: A representation for the partition (4,3,3,1,1).

3. Generating Functions for Partitions
The generating function for p(n) is P (x) = P∞

n=0 p(n)xn, where the coefficient p(n) represent the
number of partitions of n.

Theorem 3.1 (Euler’s Generating Function for p(n)).

P (x) :=
∞X

n=0
p(n)xn = (1 + x + x2 + . . . )(1 + x2 + x4 + . . . )(1 + x3 + x6 + . . . ) · · · =

∞Y

i=1

1
1 − xi

4. Restricted Partitions and Euler’s Partition Theorem
4.1 Partitions into Exactly k Parts

Definition 4.1.
Let p(n, k) denote the number of partitions of n into exactly k parts.

Example.
For n = 5, k = 2: partitions are (4, 1), (3, 2). So p(5, 2) = 2.

Proposition 4.2 (Recurrence for p(n, k)).
For n, k ≥ 1: p(n, k) = p(n−k, k−1)+p(n−k, k) = p(n−1, k−1)+p(n−k, k) = Pmin(k,n−k)

i=1 p(n−k, i).

The table below lists p(n, k):
n\k 0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0
3 0 1 1 1 0 0 0 0 0
4 0 1 2 1 1 0 0 0 0
5 0 1 2 2 1 1 0 0 0
6 0 1 3 3 2 1 1 0 0
7 0 1 3 4 3 2 1 1 0
8 0 1 4 5 5 3 2 1 1

Theorem 4.3.
The number of partitions of n into k parts is equal to the number of partitions of n where the largest
part is k.
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4.1.1 Partitions into at most k Parts

Definition 4.4.
Let p≤k(n) denote the number "partitions of n with at most k parts."

Example.
Let n = 5 and k = 2. We are looking for partitions of 5 with at most 2 parts.

• Partitions with exactly 1 part (j = 1): (5). There is p(5, 1) = 1 such partition.
• Partitions with exactly 2 parts (j = 2): (4,1), (3,2). There are p(5, 2) = 2 such partitions.

So, p≤2(5) = p(5, 1) + p(5, 2) = 1 + 2 = 3.

Proposition 4.5.
The function p≤k(n) (counting partitions of n into at most k parts) has the following properties:

1. For n ≥ 0:

p≤k(n) =
kX

j=0
p(n, j)

2. For k ≥ 1 and n ≥ 0:
p(n, k) = p≤k(n) − p≤(k−1)(n)

3. If k ≥ n:
p≤k(n) = p(n)

4.1.2 Generating function of p≤k(n) and p(n, k)

Theorem 4.6 (Generating Functions by Number of Parts).
Let p≤k(n) be the number of partitions of n into at most k positive parts, and let p(n, k) be the
number of partitions of n into exactly k positive parts. Their respective ordinary generating functions
are:

1. For partitions into at most k parts:

P≤k(x) =
∞X

n=0
p≤k(n)xn =

kY

i=1

1
1 − xi

2. For partitions into exactly k parts:

Pk(x) =
∞X

n=k

p(n, k)xn =
kY

i=1

xk

1 − xi

(The sum for Pk(x) starts at n = k as n must be at least k to have k positive parts.)

4.2 General Approach to Restricted Partitions
Generating functions can be adapted to count partitions with various restrictions. If a part j can

appear s1 or s2 or ... sm times, its factor in the generating function is (xjs1 + xjs2 + · · · + xjsm). The
overall generating function is the product of these factors.
4.2.1 Partitions into Distinct Parts and Odd Parts

Example (Generating Function for Partitions into Distinct Parts).
Let pd(n) be the number of partitions of n where all parts are distinct. Each part k can appear 0 or
1 time. Factor for part k: (1 + xk). Generating function: Pd(x) = Q∞

k=1(1 + xk).

Example (Generating Function for Partitions into Odd Parts).
Let po(n) be the number of partitions of n where all parts are odd. Only odd parts j = 2k − 1
are allowed, appearing any number of times. Factor for odd part j: 1

1−xj . Generating function:
Po(x) = Q∞

k=1
1

1−x2k−1 .
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Theorem 4.7 (Euler’s Partition Theorem, 1748).
The number of partitions of n into distinct parts equals the number of partitions of n into odd parts:
pd(n) = po(n) for all n ≥ 0.

4.2.2 Further Examples of Restricted Partitions
Example (Partitions where the part ’2’ appears at most once).
Let q(n) be the number of such partitions. Generating function: Q(x) = (1 + x2) Q

k ̸=2,k≥1
1

1−xk =
(1 − x4)P (x). So, q(n) = p(n) − p(n − 4) (with p(j) = 0 if j < 0).

Example (Partitions where each part appears at most twice).
Let r(n) be the number of such partitions. Factor for part k: (1 + xk + x2k). Generating function:
R(x) = Q∞

k=1(1 + xk + x2k) = Q∞
k=1

1−x3k

1−xk = P (x)
P (x3) .

5. Exercises
Exercise.
List partitions of n = 6. Verify pd(6) = po(6). Calculate p(6, 3) using its recurrence.

Exercise.
Draw the Ferrers diagram for (5, 2, 2) and find its conjugate.

Exercise.
Write the generating function for partitions where all parts are ≥ 2 and distinct.
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Appendix A: Ordinary and Exponential Generating Func-
tions

Definition .1 (Generating Function).
The Generating Function for an infinite sequence {an}∞

n=0 = (a0, a1, a2, . . . ) is the formal power
series:

G(x) =
∞X

n=0
anxn = a0 + a1x + a2x

2 + a3x
3 + . . .

In this series, the coefficient an is the n-th term of the sequence, and the exponent n in xn indicates
its position. This series is often represented by a compact expression , and expanding this expression
generate a power series having the terms of the sequence as coefficients.

Example.
Consider the sequence (1, 1, 1, 1, . . . ). Its generating function can be given by the compact expression

1
1−x

. When we expands this expression as a power series, we get:
1

1 − x
= 1 + x + x2 + x3 + . . .

The coefficients of this expansion are 1, 1, 1, 1, . . . , which are exactly the terms of our original se-
quence.

Definition .2 (Ordinary and Exponential Generating Function).
Given a sequence (an)n≥0,

• The Ordinary generating function (OGF) is the formal power series:

A(x) =
∞X

n=0
anxn.

• The Exponential generating function (EGF) is the formal power series:

A(x) =
∞X

n=0

an

n! xn.

Definition .3 (Mixed Generating Function).
Given a double sequence (an,k)n,k≥0, its mixed ordinary-exponential generating function is:

A(x, y) =
∞X

n=0

∞X

k=0
an,k xn yk

k! .

Theorem .4 (Generating Function for Constant and Linear Sequences).
Let an = 1 for all n ≥ 0. Then:

OGF:
∞X

n=0
xn = 1

1 − x

EGF:
∞X

n=0

xn

n! = ex

Let an = n. Then:

OGF:
∞X

n=1
nxn = x

(1 − x)2

EGF:
∞X

n=0

nxn

n! = xex
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Theorem .5 (Generating Function of Fibonacci Numbers).
Let F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. The generating function of the Fibonacci
sequence is:

F (x) =
∞X

n=0
Fnxn = x

1 − x − x2
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