
Chapter 3: Other Important Combinatorial
Sequences

1. Eulerian Numbers
Definition 1.1.
In a permutation π = π1π2 . . . πn of the set [n] = {1, 2, . . . , n}:

• An ascent is a position i (where 1 ≤ i ≤ n − 1) such that πi < πi+1.
• A descent is a position i (where 1 ≤ i ≤ n − 1) such that πi > πi+1.

Example.
Consider the permutation π = 3142:

• Ascents: Position 2 (since 1 < 4).
• Descents: Positions 1 (since 3 > 1) and 3 (since 4 > 2).

Consider the permutation π = 1234:
• Ascents: Positions 1, 2, and 3 (all adjacent pairs are increasing).
• Descents: None.

Consider the permutation π = 4321:
• Ascents: None.
• Descents: Positions 1, 2, and 3 (all adjacent pairs are decreasing).

Theorem 1.2 (Complementarity of Ascents and Descents).
For any permutation π = π1π2 . . . πn of [n]:

Number of ascents + Number of descents = n − 1.

Definition 1.3.
The Eulerian number

D
n
k

E
is the number of permutations of [n] with exactly k ascents.

Example.
For n = 3:

•
D

3
0

E
= 1 (permutation 321),

•
D

3
1

E
= 4 (permutations 213, 132, 312, 231),

•
D

3
2

E
= 1 (permutation 123).

Theorem 1.4 (Recurrence for Eulerian Numbers).
The Eulerian numbers satisfy the recurrence:D

n
k

E
= (k + 1)

D
n−1

k

E
+ (n − k)

D
n−1
k−1

E
,

with boundary conditions
D

0
0

E
= 1 and

D
n
k

E
= 0 if k < 0 or k ≥ n.

1.1 Special Values of Eulerian Numbers
For all n ≥ 1:
•
D

n
0

E
= 1 (only the decreasing permutation)

•
D

n
n−1

E
= 1 (only the increasing permutation)

•
D

n
1

E
= 2n − n − 1
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•
D

n
k

E
= 0 if (k >= n)

Theorem 1.5 (Symmetry).D
n
k

E
=
D

n
n−1−k

E

Theorem 1.6 (Sum Identity).
For any integer n ≥ 1,

n−1X

k=0

D
n
k

E
= n!

1.2 Triangle of Eulerian Numbers
Using the recurrence

D
n
k

E
= (k + 1)

D
n−1

k

E
+ (n − k)

D
n−1
k−1

E
, the triangle is:

n\k 0 1 2 3 4 5 6 7 8 9
0 1
1 1 0
2 1 1 0
3 1 4 1 0
4 1 11 11 1 0
5 1 26 66 26 1 0
6 1 57 302 302 57 1 0
7 1 120 1191 2416 1191 120 1 0
8 1 247 4293 15619 15619 4293 247 1 0
9 1 502 14608 88234 156190 88234 14608 502 1 0

1.3 Generating Function
The Eulerian numbers appear as coefficients in certain generating functions. The Eulerian poly-

nomial An(x) is defined as:

An(x) =
nX

k=0

D
n
k

E
xk

(Note:
D

n
k

E
= 0 for k > n − 1 when n ≥ 1, so the sum effectively goes up to k = n − 1. For n = 0,

A0(x) =
D

0
0

E
x0 = 1).

Proposition 1.7 (Recurrence Relation for Eulerian Polynomials).
For all integers n ≥ 1, the Eulerian polynomials satisfy:

An(x) = (1 + (n − 1)x)An−1(x) + (x − x2)A′
n−1(x), for n ≥ 1,

with A0(x) = 1.

Theorem 1.8 (Generating Function for Eulerian Polynomials).
The Eulerian polynomials An(x) are related to the generating function for powers as follows:

∞X

j=1
jnxj = xAn(x)

(1 − x)n+1 , for n ≥ 0. (∗)

Alternatively, a mixed generating function for Eulerian numbers is:

A(z, x) =
∞X

n=0
An(x)zn

n! =
∞X

n=0

nX

k=0

D
n
k

E
xk zn

n! = 1 − x

ez(x−1) − x
. (∗∗)

27



1.4 Worpitzky’s Identity
Worpitzky’s identity provides a way to express monomials xn as a sum involving Eulerian numbers

and binomial coefficients.

Theorem 1.9 (Worpitzky’s Identity).
For all integers n ≥ 0 and variables x:

xn =
nX

k=0

D
n
k

E x + k

n

!

with
D

n
n

E
= 0 for n ≥ 1.

Example (Worpitzky’s Identity for n=2).
We have A(2, 0) = 1, A(2, 1) = 1, and A(2, 2) = 0. According to Worpitzky’s identity:

x2 = A(2, 0)
 

x + 0
2

!
+ A(2, 1)

 
x + 1

2

!
+ A(2, 2)

 
x + 2

2

!

=
 

x

2

!
+
 

x + 1
2

!
+ 0 ·

 
x + 2

2

!

= x(x − 1)
2 + (x + 1)x

2

= x2 − x + x2 + x

2 = 2x2

2 = x2.

This demonstrates the identity for n = 2.

2. Harmonic Numbers and Related Sums
Definition 2.1 (Harmonic Numbers).
The n-th harmonic number is defined recursively by:

H0 = 0, Hn = Hn−1 + 1
n

for n ≥ 1.

Theorem 2.2 (Relation to Stirling Numbers of the First Kind).
For n ≥ 1, harmonic numbers satisfy:

Hn = 1
n!

nX

k=1

"
n

k

#
k,

where
h

n
k

i
is the number of permutations of n elements with k cycles (unsigned Stirling numbers of

the first kind).

Theorem 2.3 (Recurrence via Stirling Numbers).
The harmonic numbers also satisfy:

Hn = Hn−1 + 1
n

.

3. Harmonic, Bernoulli, Euler, and Genocchi Numbers
This section introduces several other classical number sequences that appear frequently in combina-

torics and analysis.
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3.1 Harmonic Numbers
Definition 3.1.
The n-th Harmonic Number, denoted Hn, is defined as the sum of the reciprocals of the first n
positive integers:

Hn =
nX

k=1

1
k

= 1 + 1
2 + 1

3 + · · · + 1
n

, for n ≥ 1.

By convention, H0 = 0.

Example. • H1 = 1
• H2 = 1 + 1

2 = 3
2

• H3 = 1 + 1
2 + 1

3 = 11
6

• H4 = 1 + 1
2 + 1

3 + 1
4 = 25

12

Theorem 3.2 (Recurrence for Harmonic Numbers).
The Harmonic numbers satisfy the recurrence relation:

Hn = Hn−1 + 1
n

for n ≥ 1,

with initial condition H0 = 0.

Theorem 3.3 (Generating Function for Harmonic Numbers).
The ordinary generating function for Hn is:

∞X

n=1
Hnxn = − ln(1 − x)

1 − x
.

Theorem 3.4 (Relation with Stirling Numbers of the First Kind).
For n ≥ 1, the Harmonic numbers satisfy:

Hn =

h
n+1

2

i

n! ,

where
h

n
k

i
denotes the unsigned Stirling numbers of the first kind.

3.2 Bernoulli Numbers
Definition 3.5.
The Bernoulli numbers, denoted Bn, are defined recursively by:

Bn = −1
(n + 1)

n−1X

k=0

 
n + 1

k

!
Bk = 0 for n ≥ 1.

with B0 = 1.

Definition 3.6.
The Bernoulli numbers can alternatively be defined by the exponential generating function:

∞X

n=0
Bn

xn

n! = x

ex − 1 .

The first few Bernoulli numbers are:
• B0 = 1
• B1 = −1

2 (Note: some older conventions use B1 = +1
2)

• B2 = 1
6
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• B3 = 0
• B4 = − 1

30
• B5 = 0
• B6 = 1

42

Proposition 3.7.
For all integers k ≥ 1, the Bernoulli numbers satisfy B2k+1 = 0.

Exercise.
Prove the proposition.

3.3 Euler Numbers
Definition 3.8 (Recurrence Relation).
The Euler numbers En are defined by the following recurrence:

En =





−
⌊ n−1

2 ⌋X

k=0

 
n

2k

!
E2k if n is even,

0 else.
with E0 = 1

Definition 3.9 (Generating Function).
The exponential generating function for Euler numbers is:

∞X

n=0
En

xn

n! = sech(x) = 2
ex + e−x

.

Key Properties of Euler Numbers
• Non-Zero Values: E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385, E10 = −50521, . . .
• Zero Values: E2k+1 = 0 for all k ≥ 0
• Integrality: All non-zero E2k are integers
• Alternating Signs: E4k > 0 and E4k+2 < 0 for k ≥ 0

Proposition 3.10 (Combinatorial Interpretation).
The absolute value |E2k| (for k ≥ 0) counts the number of alternating permutations of
{1, 2, . . . , 2k} starting with an ascent. These permutations satisfy:

σ1 < σ2 > σ3 < σ4 > · · · < σ2k−1 > σ2k.

Special Case: For k = 0, |E0| = 1 counts the empty permutation.

3.4 Genocchi Numbers
Definition 3.11 (Recurrence Relation).
The Genocchi numbers Gn are defined by the following recurrence:

Gn = 2(1 − 2n)Bn

Definition 3.12 (Generating Function).
The exponential generating function for Genocchi numbers is:

∞X

n=1
Gn

xn

n! = 2x

ex + 1 .
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Key Properties of Genocchi Numbers
• Non-Zero Values: G1 = 1, G2 = −1, G4 = 1, G6 = −3, G8 = 17, G10 = −155, . . .
• Zero Values: G2k+1 = 0 for k ≥ 1
• Integrality: All non-zero G2k are integers

Proposition 3.13 (Combinatorial Interpretation).
The absolute value |G2k| (for k ≥ 1) counts the number of permutations of [2n − 1] with descents
after the even numbers and ascents after the odd numbers.

Example.
For k = 2 (2k − 1 = 3), the permutations of {1, 2, 3} satisfying the conditions are:

{2, 1, 3} : 2 > 1 < 3.

confirming |G2| = 1. For k = 3 (2k −1 = 5), the permutations of {1, 2, 3, 5} satisfying the conditions
are:

{{2, 1, 4, 3, 5}, {3, 4, 2, 1, 5}, {4, 2, 1, 3, 5}}
confirming |G3| = 3.

4. Catalan and Delannoy Numbers
4.1 Catalan Numbers

Definition 4.1 (Triangulation).
For a polygon with n + 2 vertices, a triangulation is a set of n − 1 non-intersecting diagonals that
subdivides the polygon into n triangles.

Definition 4.2 (Catalan numbers).
The n-th Catalan number Cn is the number of triangulations of a convex polygon with n+2 vertices.
We set C0 = 1.

Example.

Theorem 4.3 (Catalan convolution via triangulations).
For every integer n ≥ 0,

Cn+1 =
nX

k=0
Ck C n−k.

4.1.1 Other Combinatorial Interpretations
Catalan numbers have a wide variety of interpretations in combinatorics. Here are a few common

ones:
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Proposition 4.4 (Parenthesizations).
The number of distinct ways to fully parenthesize a product of n + 1 terms is the n-th Catalan
number Cn.

Example (n = 2): For abc:
• (a(bc))
• ((ab)c)

Proposition 4.5.
The number of (rooted) binary trees with n vertices—each vertex having a left and a right subtree
that may be empty—is the n-th Catalan number Cn.

Example.
For n = 3 we have C3 = 5 distinct binary trees. The five shapes are:

These five configurations exhaust all binary trees with three vertices, illustrating that their count
equals C3 = 5.

Proposition 4.6 (Balanced Paths).
The number of paths from (0, 0) to (2n, 0) using steps (1, 1) ("up") and (1, −1) ("down") that never
dip below the x-axis is Cn.

Example (n = 2): Two valid paths:
• UUDD: ↗↗↘↘
• UDUD: ↗↘↗↘

4.1.2 Generating Function and Explicit Formula

Theorem 4.7 (Cauchy product).
Let

∞X

n=0
an and

∞X

n=0
bn be two absolutely convergent series with sums A = P

n≥0 an and B = P
n≥0 bn.

Define the sequence (cn)n≥0 by the Cauchy convolution

cn =
nX

k=0
ak bn−k (n ≥ 0)

and consider the series
∞X

n=0
cn.

Then the series Pn≥0 cn converges absolutely and
∞X

n=0
cn = A B.

Theorem 4.8 (Generating Function for Catalan Numbers).
The ordinary generating function C(x) for Catalan numbers satisfies:

C(x) = 1 − √
1 − 4x

2x
.
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Theorem 4.9 (Closed Formula for Catalan Numbers).
The n-th Catalan number is given by:

Cn = 1
n + 1

 
2n

n

!
.

Lemma 4.10 (Generalized Binomial Coefficient).
For k ≥ 1:  

1/2
k

!
= (−1)k−1(2k − 2)!

22k−1k!(k − 1)! .

4.1.3 Combinatorial Expressions for Catalan Numbers

Proposition 4.11 (Alternative Formulas for Catalan Numbers).
The following identities hold for the n-th Catalan number:

Cn =
 

2n

n

!
−
 

2n

n − 1

!

and
Cn =

 
2n − 1

n

!
−
 

2n − 1
n + 1

!
.

4.2 Narayana Numbers
Definition 4.12 (Narayana Numbers).
The Narayana number, denoted N(n, k), counts:

• Lattice paths from (0, 0) to (2n, 0) using n up-steps U = (1, 1) and n down-steps D = (1, −1),
which do not go below the x-axis, and have exactly k peaks. A peak is an up-step immediately
followed by a down-step (a UD sequence).

Example.
The Narayana number N(3, 2) = 3. This means:

• There are 3 lattice paths from (0,0) to (6,0) using 3 U-steps and 3 D-steps, staying on or above
the x-axis, with exactly 2 peaks. The sequences of steps for these paths are:

1. UUDUDD (peaks after the 2nd U and 4th U)
2. UDUUDD (peaks after the 1st U and 3rd U)
3. UUDDUD (peaks after the 2nd U and 5th U)

• There are 3 non-crossing partitions of the set {1, 2, 3} into exactly 2 blocks:
1. {{1,2}, {3}}
2. {{1,3}, {2}}
3. {{2,3}, {1}}

The paths are illustrated below.
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x

y

UUDUDD
x

y

UDUUDD
x

y

UUDDUD

Figure 1: The three lattice paths corresponding to N(3, 2) = 3. Red dots mark the peaks.

Theorem 4.13 (Binomial Formula for Narayana Numbers).
The Narayana numbers can be calculated using binomial coefficients:

N(n, k) = 1
n

 
n

k − 1

! 
n

k

!
for 1 ≤ k ≤ n.

Example (Narayana Table).
The first few Narayana numbers N(n, k):

N(n, k) k = 1 k = 2 k = 3 k = 4 k = 5
n = 1 1 0 0 0 0
n = 2 1 1 0 0 0
n = 3 1 3 1 0 0
n = 4 1 6 6 1 0
n = 5 1 10 20 10 1

Proposition 4.14 (Connection to Catalan Numbers).
The n-th Catalan number, Cn = 1

n+1

�
2n
n

�
, is the sum of the Narayana numbers in the n-th row:

Cn =
nX

k=1
N(n, k).

4.3 Delannoy Numbers
Definition 4.15 (Delannoy Number).
The Delannoy number, denoted D(m, n), counts the number of paths (King’s paths) from the
origin (0, 0) to the point (m, n) in an integer grid using only steps:

• East (E): (x, y) → (x + 1, y)
• North (N): (x, y) → (x, y + 1)
• Northeast (NE): (x, y) → (x + 1, y + 1)

Example. • D(1, 1) = 3:

x

y

NE E, N N, E

Figure 2: The three paths counted by D(1, 1) = 3.

• D(2, 1) = 5:
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x

y

NE, E E, NE E, E, N E, N, E N, E, E

Figure 3: The five paths counted by D(2, 1) = 5.

• D(2, 2) = 13:

x

y

E,E,N,N E,N,E,N E,N,N,E

N,E,E,N

N,E,N,E
x

y

N,N,E,E

NE,E,N NE,N,E

E,NE,N

N,NE,E

x

y

E,N,NE

N,E,NENE,NE

Figure 4: The thirteen paths counted by D(2, 2) = 13.

Proposition 4.16 (Recurrence Relation for Delannoy Numbers).
For m, n > 0, the Delannoy numbers satisfy:

D(m, n) = D(m − 1, n) + D(m, n − 1) + D(m − 1, n − 1).
The boundary conditions are D(m, 0) = 1 for m ≥ 0 and D(0, n) = 1 for n ≥ 0. (This implies
D(0, 0) = 1).

Example (Delannoy Table).
The first few Delannoy numbers D(m, n):

D(m, n) n = 0 n = 1 n = 2 n = 3 n = 4
m = 0 1 1 1 1 1
m = 1 1 3 5 7 9
m = 2 1 5 13 25 41
m = 3 1 7 25 63 129
m = 4 1 9 41 129 321

Proposition 4.17 (Binomial Formulas for Delannoy Numbers).
The Delannoy numbers can also be expressed using binomial coefficients as:

D(m, n) =
min(m,n)X

j=0

 
m + n − j

m

! 
m

j

!
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