
Chapter 1: Solving Recurrence Relations

1. Introduction to Recurrence Relations
Definition 1.1 (Sequence).
sequence is a function

a : X → S,
where X is a subset of consecutive integers, typically N0 or N. The value a(i), denoted by ai, is
called the ith term of the sequence.

• A finite sequence has X = {i1, i2, . . . , in} and is written as (ai1 , ai2 , . . . , ain).
• An infinite sequence has X = N0 or N and is denoted

(an)n∈N0 = (a0, a1, a2, . . . ) or (an)n∈N = (a1, a2, a3, . . . ).

Definition 1.2 (Recursive Sequence).
A sequence (an)n∈N0 is called a recursive sequence of order k if there exists a function F : Sk → S
and initial values a0, a1, . . . , ak−1 ∈ S such that

an =
a0, a1, . . . , ak−1 are given as initial values if 0 ≤ n < k,

F (an−1, an−2, . . . , an−k), if n ≥ k.

Definition 1.3 (Linear Recurrence Relation).
A recursive sequence is called a linear recurrence relation of order k if it can be written as:

an = c1 · an−1 + c2 · an−2 + · · · + ck · an−k + g(n) for n ≥ k,

where c1, c2, . . . , ck are coefficients (which may depend on n) with ck ̸= 0, and g(n) is a given function
of n.

• If g(n) = 0, the recurrence is homogeneous.
• If g(n) ̸= 0, the recurrence is nonhomogeneous.

Examples (Recursive Sequences).
The following are fundamental examples of recursively defined sequences:

• Sequence of Positive Integers:

an =
1, if n = 1,

an−1 + 1, if n ≥ 2.

• Arithmetic Progression: A sequence with initial term a0 and common difference d:

an =
a0, if n = 0,

an−1 + d, if n ≥ 1.

• Geometric Progression: A sequence with initial term a0 and common ratio r:

an =
a0, if n = 0,

r · an−1, if n ≥ 1.

• Fibonacci Sequence: Defined by

Fn =


0, if n = 0,

1, if n = 1,

Fn−1 + Fn−2, if n ≥ 2.

• Logistic Map: This recurrence is nonlinear because it involves a product of terms.
an = r · an−1(1 − an−1),

where r is a constant.
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Definition 1.4 (Closed Form).
A closed form for the term an is an expression E(n) such that

an = E(n),
that can be evaluated in a finite number of standard operations (addition, multiplication, exponen-
tiation, etc.) with no dependence on prior terms of the sequence.

Remark.
The order k indicates the number of preceding terms used to define an.

2. Manipulation of Sums
Summations are a fundamental tool in discrete mathematics and recurrence relations. In this sub-

section, we present several key properties for manipulating sums. These properties allow us to simplify
expressions, change summation indices, and rearrange sums to suit our needs.

• Linearity:
n∑

k=m

(c ak + d bk) = c
n∑

k=m

ak + d
n∑

k=m

bk.

• Splitting:
p∑

k=m

ak +
n∑

k=p+1
ak =

n∑
k=m

ak.

for any m ≤ p < n.
• Pulling Out Constants:

n∑
k=m

c ak = c
n∑

k=m

ak.

• Index Shifting:
n∑

k=m

ak =
n+r∑

j=m+r

aj−r.

• Reversing Order:
n∑

k=0
ak =

n∑
k=0

an−k.

• Sum Swapping (Double Sum):
n∑

i=1

m∑
j=1

aij =
m∑

j=1

n∑
i=1

aij.

• Telescoping Sum: if ak = bk+1 − bk
n∑

k=m

(bk+1 − bk) = bn+1 − bm.

These properties are invaluable for the manipulation of sums, especially when solving recurrence
relations and simplifying combinatorial expressions.

2.1 Closed form for elementary finite sums
Examples.

• Gauss’s Sum of Positive Integers
n∑

k=1
k = n(n + 1)

2 .

Proof. As a 9-year-old, Gauss derived this formula when tasked with summing 1 + 2 +
· · · + 100. He observed that writing the sum forwards (S = 1 + 2 + · · · + n) and backwards
(S = n + (n − 1) + · · · + 1) gives 2S = n(n + 1). Dividing by 2 yields S = n(n+1)

2 . For odd
n, the middle term n+1

2 averages the pairs.
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• Sum of First n Odd Numbers
n∑

k=1
(2k − 1) = n2.

Proof. Observe 1 = 12, 1 + 3 = 22, 1 + 3 + 5 = 32. Assume true for n: ∑n+1
k=1(2k − 1) =

n2 + (2(n + 1) − 1) = (n + 1)2.

• Sum of First n Even Numbers
n∑

k=1
2k = n(n + 1).

Proof. Factor 2: 2∑n
k=1 k = 2 · n(n+1)

2 = n(n + 1).

• Arithmetic Progression Sum For a1, a1 + d, . . . , a1 + (n − 1)d:
Sn = n

2
[
2a1 + (n − 1)d

]
.

Proof. Write Sn forwards and backwards, then add: 2Sn = n[2a1 + (n − 1)d].

• Geometric Progression Sum For a1, a1r, . . . , a1r
n−1 (r ̸= 1):

Sn = a1
1 − rn

1 − r
.

Proof. Let Sn = a1 + a1r + · · · + a1r
n−1. Multiply by r: rSn = a1r + · · · + a1r

n. Subtract:
Sn − rSn = a1(1 − rn).

• Sum of Powers For p ∈ N, closed forms for ∑n
k=1 kp exist. Examples:

n∑
k=1

k2 = n(n + 1)(2n + 1)
6 ,

n∑
k=1

k3 =
(

n(n + 1)
2

)2

.

Proof. Use induction or Faulhaber’s formula. For p = 2, verify base case n = 1 and assume
true for n; show for n + 1 using algebraic expansion.

Lemma 2.1.
For any integer n ≥ 1 and any real numbers x and y, the following factorization holds:

xn − yn = (x − y)
n−1∑
k=0

xkyn−k−1 = (x − y)
n∑

k=1
xk−1yn−k.

Proof. The proof follows by factoring xn − yn as a difference of nth powers. One may verify by
expanding the right-hand side or by using induction on n.

3. First-Order Recurrence Relations
Consider the first-order linear recurrence relation:

Un =
U0, if n = 0

cnUn−1 + g(n), for n ≥ 1
where g(n) is a given function.

Theorem 3.1.
The closed-form expression for Un is given by:

Un =
 n∏

j=1
cj

U0 +
n∑

i=1

 n∏
j=i+1

cj

 g(i).

Proof. We use the substitution method. We write down the terms Un, . . . , U1 and multiply the i-th
line by the coefficient of Un−i−1. We get:
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Un = cnUn−1 + g(n)
cnUn−1 = cncn−1Un−2 + cng(n − 1)
cncn−1Un−2 = cncn−1cn−2Un−3 + cncn−1g(n − 2)
cncn−1cn−2Un−3 = cncn−1cn−2cn−3Un−4 + cncn−1cn−2g(n − 3)
... ... ... ... n∏

j=4
cj

U3 =
 n∏

j=3
cj

U2 +
 n∏

j=4
cj

 g(3)
 n∏

j=3
cj

U2 =
 n∏

j=2
cj

U1 +
 n∏

j=3
cj

 g(2)
 n∏

j=2
cj

U1 =
 n∏

j=1
cj

U0 +
 n∏

j=2
cj

 g(1)

If we sum all the lines we get

Un =
 n∏

j=1
cj

U0 +
n−1∑
i=1

 n∏
j=i+1

cj

 g(i) + g(n)

=
 n∏

j=1
cj

U0 +
n∑

i=1

 n∏
j=i+1

cj

 g(i).

Corollary 3.2.
Let x1, x2, . . . , xm and y1, y2, . . . , ym be distinct complex numbers, and let r ∈ Z. The general term
of the linear recurrence sequence (Un)n≥0 defined by

Un =


U0, if n = 0,

aUn−1 +
m∑

k=1
xkyn+r

k , for n ≥ 1,

has the closed form

Un =


anU0 +

m∑
k=1

xkyr+1
k

(
an − yn

k

a − yk

)
, if ∀k, yk ̸= a,

anU0 +
m∑

k=1,k ̸=k0

xkyr+1
k

(
an − yn

k

a − yk

)
+ nxk0an+r, if ∃k0, yk0 = a.

Proof. Let ci = a and g(n) =
m∑

k=1
xkyn+r

k . By applying Theorem 3.1, we obtain

Un =
 n∏

j=1
a

U0 +
n∑

i=1

 n∏
j=i+1

a

 m∑
k=1

xkyn+r
k

= anU0 +
n∑

i=1
an−i

m∑
k=1

xkyi+r
k

= anU0 +
m∑

k=1
xkyr+1

k

n∑
i=1

an−iyi−1
k .
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Thus, we have

Un =


anU0 +

m∑
k=1

xkyr+1
k

(
an − yn

k

a − yk

)
, if ∀k, yk ̸= a,

anU0 +
m∑

k=1,k ̸=k0

xkyr+1
k

(
an − yn

k

a − yk

)
+ nxk0an+r, if ∃k0, yk0 = a.

Corollary 3.3.
The general term of the linear recurrence sequence (Un)n≥0 defined by

Un =
U0, if n = 0,

aUn−1 + b, for n ≥ 1,

has the closed form

Un =
anU0 + b

(
an−1
a−1

)
, if a ̸= 1

anU0 + nb, if a = 1.

Proof. Let ci = a and g(n) = b. By applying Theorem 3.1, we obtain

Un =
 n∏

j=1
a

U0 +
n∑

i=1

 n∏
j=i+1

a

 b

= anU0 + b
n∑

i=1
an−i

= anU0 + b
n−1∑
i=0

ai

Therefore

Un =
anU0 + b

(
an−1
a−1

)
, if a ̸= 1

anU0 + nb, if a = 1.

Exercise.
Un = 2

3Un−1 + 1 with U0 = 0. Find the closed formula for Un.

Solution.
Here, a = 2

3 and b = 1. Using the corollary, since a ̸= 1:

Un =
(2

3

)n

(0) +

(

2
3

)n
− 1

2
3 − 1

 = −3
((2

3

)n

− 1
)

Thus, Un = −3
((

2
3

)n
− 1

)
.

Remark.
Any closed-form solution derived from solving a recurrence relation should be rigorously verified
using mathematical induction. This ensures that the formula holds for all values within its domain.

3.1 Example: Tower of Hanoi
The Tower of Hanoi is a mathematical puzzle involving three pegs (A, B, and C) and a set of disks

of different sizes. Initially, all disks are stacked on peg A in decreasing order. The goal is to move the
stack to peg C while following these rules:

1. Only one disk may be moved at a time.
2. A larger disk cannot be placed on a smaller one.
3. Disks may only be moved between the three pegs.
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Let Tn be the minimum number of moves required to solve the Tower of Hanoi puzzle with n disks.
Clearly, we have:
• T1 = 1 (Move the single disk from peg A to peg C).
• T2 = 3 (Move the smaller disk to peg B, the larger disk to peg C, and then the smaller disk to

peg C).
• T3 = 7
To solve the Tower of Hanoi problem for n disks, we follow these steps:
1. Move the top n − 1 disks from peg A to peg B (requiring Tn−1 moves).
2. Move the largest disk directly from peg A to peg C (1 move).
3. Move the n − 1 disks from peg B to peg C (requiring another Tn−1 moves).
This gives the recurrence relation:

Tn = 2Tn−1 + 1, T0 = 0.

Solving this recurrence using the closed-form formula for first-order recurrences:
Tn = 2n − 1.

Thus, the closed-form solution for the Tower of Hanoi puzzle is Tn = 2n − 1.

4. Second-Order Recurrence Relations
A second-order recurrence relation expresses each term in terms of the two preceding terms. It is

given by:
Un = aUn−1 + bUn−2 + g(n), for n ≥ 2,

where a and b are constants, and g(n) is a given function. The initial values U0 and U1 are given.

4.1 Characteristic Equation Method
In the previous section, we discussed how to solve first-order recurrence relations. The approach for

solving second-order recurrence relations involves transforming them into first-order recurrence relations
and then solving them accordingly.

To achieve this, we introduce the following change of variable:
Vn = Un + αUn−1, (1)

where Vn satisfies a first-order recurrence relation:
Vn = βVn−1 + d(n). (2)

Substituting (1) into (2) , we obtain:
Un + αUn−1 = β(Un−1 + αUn−2) + d(n).

Rearranging, we get:
Un = (β − α)Un−1 + αβUn−2 + d(n).

Comparing this with the standard second-order recurrence relation:
Un = aUn−1 + bUn−2 + g(n),

we conclude that the parameters must satisfy the system:β − α = a,

αβ = b.
(3)

This system can also be rewritten as: β − α = a,

−αβ = −b.
(4)
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Lemma 4.1.
Let x and y satisfy the system: x + y = a,

xy = b.
(5)

Then, x and y are the roots of the quadratic equation:
t2 − at + b = 0. (6)

Proof. Consider the quadratic equation:
(t − x)(t − y) = 0.

Expanding the left-hand side, we obtain:
t2 − (x + y)t + xy = 0.

Substituting the given values x + y = a and xy = b from (5), we get:
t2 − at + b = 0.

This shows that x and y are indeed the roots of the quadratic equation (6), completing the proof.

Thus, solving (24) reduces to finding the roots of the characteristic equation:
(t + α)(t − β) = t2 − (−α + β)t − αβ = t2 − at − b = 0. (7)

Once we determine α and β, we return to (2), which gives the first-order recurrence:
Vn = βVn−1 + d(n).

Using standard techniques, we solve this recurrence to find its general solution, denoted as h(n). Sub-
stituting back into (1), we obtain:

Un = −αUn−1 + h(n).
Finally, solving this first-order recurrence provides the explicit expression for Un.

Remark.
As with all recurrence relations, any closed-form solution obtained must be verified by mathematical
induction.

4.1.1 Example: Fibonacci Sequence
The Fibonacci sequence is defined by the recurrence relation:

Fn = Fn−1 + Fn−2, for n ≥ 2, (8)
with initial conditions:

F0 = 0, F1 = 1. (9)
To transform this second-order recurrence into a first-order recurrence, we introduce the change of

variable:
Vn = Fn + αFn−1. (10)

where Vn satisfies a first-order recurrence relation:
Vn = βVn−1. (11)

Substituting (10) into (11), we obtain:
Fn + αFn−1 = β(Fn−1 + αFn−2),

which simplifies to:
Fn = (β − α)Fn−1 + αβFn−2.

Comparing with (8), we conclude that the parameters satisfy:β − α = 1,

αβ = 1.
(12)

Rewriting the system: β − α = 1,

−αβ = −1.
(13)
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Solving for α and β, we derive the characteristic polynomial:
(t + α)(t − β) = t2 − (−α + β)t − αβ = t2 − t − 1 = 0. (14)

Applying the quadratic formula:

t =
−(−1) ±

√
(−1)2 − 4(1)(−1)
2(1) = 1 ±

√
5

2 .

Thus, the characteristic roots are:

−α = 1 +
√

5
2 , β = 1 −

√
5

2 . (15)

Remark.
The quantity

φ = 1 +
√

5
2

is called the Golden Ratio. It plays an important role in mathematics, nature, and various appli-
cations in art and architecture. The second root,

φ̄ = 1 −
√

5
2 ,

is often referred to as the conjugate of the Golden Ratio.

Remark.
The choice of assigning −α and β as the first and second solutions, or vice versa, does not affect the
final result. This is because the solution structure remains the same, and any change in ordering is
absorbed by the constants determined by initial conditions.

Since we obtained α and β, we now solve the first-order recurrence:
Vn = βVn−1.

Using standard techniques, we solve this recurrence to find its general solution:
Vn = βn−1V1. (16)

From (10), we set V1 = F1 = 1, so:

Vn = βn−1, where β = 1 −
√

5
2 .

Substituting back into (10), we obtain:
Fn = −αFn−1 + βn−1,

−αFn−1 = (−α)2Fn−2 + −αβn−2,

(−α)2Fn−2 = (−α)3Fn−3 + (−α)2βn−3,

... = ... + ...,
(−α)n−2F2 = (−α)n−1F1 + (−α)n−2β1,

(−α)n−1F1 = (−α)nF0 + (−α)n−1.

Summing all the equations, we obtain the explicit formula for the Fibonacci sequence (Binet’s for-
mula):

Fn =
n−1∑
i=0

(−α)iβn−1−i = (−α)n − βn

(−α) − β
,

= 1√
5

((
1 +

√
5

2

)n

−
(

1 −
√

5
2

)n)
.

Proof by Induction We now prove by induction that:

Fn = 1√
5

(φn − φ̄n) , (17)
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where φ = 1+
√

5
2 is the Golden Ratio and φ̄ = 1−

√
5

2 is its conjugate.
Base Cases: For n = 0:

F0 = 1√
5
(
φ0 − φ̄0

)
= 1√

5
(1 − 1) = 0.

For n = 1:
F1 = 1√

5
(
φ1 − φ̄1

)
= 1√

5

(
1 +

√
5

2 − 1 −
√

5
2

)
.

Since φ − φ̄ =
√

5, we obtain:

F1 =
√

5√
5

= 1.

Inductive Step: Assume that the formula holds for n and n − 1:

Fn = 1√
5

(φn − φ̄n) .

Using the Fibonacci recurrence and properties of φ, we conclude:

Fn+1 = 1√
5
(
φn+1 − φ̄n+1

)
.

Thus, Binet’s formula is proven by induction.

Exercise.
The approach used to solve second-order recurrence relations can be extended to third-order recurrence
relations. Consider the recurrence relation:

Un = aUn−1 + bUn−2 + cUn−3,

where the initial values U0, U1, and U2 are given.
• Propose a systematic method to solve this recurrence relation.
• Derive the associated characteristic polynomial.

4.2 Some properties of Second-Order Recurrence Relation
4.2.1 Binet’s Formula

Binet’s formula is simply the closed-form expression for any second-order recurrence sequence. For
the standard Fibonacci sequence, it is given by:

Fn = 1√
5

(φn − φ̄n) , (18)

where
φ = 1 +

√
5

2 , φ̄ = 1 −
√

5
2

are the two roots of the characteristic equation t2 − t − 1 = 0.

Binet’s Formula for Homogeneous Second-Order Linear Recurrence Sequence:
We now extend the same method to solve the general homogeneous second-order linear recurrence

relation:
Un = aUn−1 + bUn−2, for n ≥ 2, (19)

where the initial values U0 and U1 are given.
We consider the general second-order linear recurrence relation:

Un = aUn−1 + bUn−2, for n ≥ 2, (20)
with initial conditions:

U0, U1 given. (21)
Note that in particular, if the initial conditions are U0 = 0 and U1 = 1, this specific sequence is

sometimes referred to as the generalized Fibonacci sequence.
To simplify this second-order recurrence into a first-order recurrence, we introduce the change of

variable:
Vn = Un + αUn−1, (22)
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where Vn satisfies the first-order recurrence:
Vn = βVn−1. (23)

Substituting (22) into (23), we have:
Un + αUn−1 = β(Un−1 + αUn−2),

which simplifies to:
Un = (β − α)Un−1 + αβUn−2.

Comparing with (20), we derive the system of equations:β − α = a,

αβ = b.
(24)

The characteristic polynomial for the recurrence is:
t2 − at − b = 0. (25)

Applying the quadratic formula, we find its characteristic roots:

t = a ±
√

a2 + 4b

2 .

Thus, the characteristic roots are:

β = a +
√

a2 + 4b

2 , −α = a −
√

a2 + 4b

2 . (26)
Since we obtained α and β, we now solve the first-order recurrence:

Vn = βVn−1.

Solving this recurrence explicitly:
Vn = βn−1V1, (27)

where V1 = U1 + αU0.
Substituting back into (22), we obtain:

Un = −αUn−1 + βn−1V1,

−αUn−1 = (−α)2Un−2 + (−α)βn−2V1,

(−α)2Un−2 = (−α)3Un−3 + (−α)2βn−3V1,

... = ... + ...,
(−α)n−2U2 = (−α)n−1U1 + (−α)n−2βV1,

(−α)n−1U1 = (−α)nU0 + (−α)n−1V1.

Summing all equations, we derive the explicit formula:

Un = (−α)nU0 +
n−1∑
i=0

(−α)iβn−1−iV1

Finally, substituting V1 = U1 + αU0, we get the explicit form of the solution:

Un =

(−α)nU0 + (−α)n − βn

−α − β
(U1 + αU0) , if − α ̸= β.

(−α)nU0 + n(−α)n−1 (U1 + αU0) , if − α = β.
(28)

where constants β = a+
√

a2+4b
2 , and −α = a−

√
a2+4b
2 .

In particular, if U0 = 0 and U1 = 1, we get the Binet formula of the generalized Fibonacci sequence,
given by:

Un =


(−α)n − βn

−α − β
, if − α ̸= β.

n(−α)n−1, if − α = β.
(29)

4.2.2 Cassini’s Identity: Homogeneous Second-Order Linear Recurrence
Consider the homogeneous second-order linear recurrence relation defined by:

Un = aUn−1 + bUn−2, U0, U1 given.
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Theorem 4.2 (Cassini’s Identity for Homogeneous Second-Order Linear Recurrences).
Then, the generalized Cassini identity holds:

Un+1Un−1 − U2
n = (−b)n−1(U2U0 − U2

1 ).

Proof. Base Case: For n = 1, we verify the identity:
U2U0 − U2

1 = (−b)1−1(U2U0 − U2
1 ),

which holds trivially.
Inductive Step: Assume the identity holds for n = k ≥ 1:

Uk+1Uk−1 − U2
k = (−b)k−1(U2U0 − U2

1 ).
We need to prove the identity for n = k + 1:

Uk+2Uk − U2
k+1 = (−b)k(U2U0 − U2

1 ).
Using the recurrence relation Uk+2 = aUk+1 + bUk, we have:

Uk+2Uk − U2
k+1 = (aUk+1 + bUk)Uk − U2

k+1.

Expanding and rearranging terms gives:
= aUk+1Uk + bU2

k − U2
k+1.

Since Uk+1 = aUk + bUk−1, substitute and simplify:
= aUkUk+1 + bU2

k − (aUk + bUk−1)Uk+1.

Simplifying carefully, we get:
= b(U2

k − Uk+1Uk−1).
Using the induction hypothesis, we have:

= b(−(−b)k−1(U2U0 − U2
1 )) = (−b)k(U2U0 − U2

1 ),
thus confirming the identity for n = k + 1. By induction, the generalized Cassini identity holds for
all n ≥ 1.
0

4.2.3 Matrix Representations
Introduction to matrices

Definition 4.3 (matrix).
A matrix is a rectangular arrangement of numbers in rows and columns. A matrix with m rows
and n columns is called an m × n matrix. The numbers inside a matrix are called its entries.

A 2 × 2 matrix has two rows and two columns and is written as:

A =
(

a b
c d

)
,

where a, b, c, d are real or complex numbers.
Matrix Addition and Scalar Multiplication

Two matrices can be added only if they have the same dimensions. Given:

A =
(

a b
c d

)
, B =

(
e f
g h

)
,

their sum is obtained by adding corresponding elements:

A + B =
(

a + e b + f
c + g d + h

)
.

For any real number (scalar) k, we define scalar multiplication as:

kA =
(

ka kb
kc kd

)
.

13



Matrix Multiplication
The product of two matrices is defined only if the number of columns in the first matrix matches

the number of rows in the second. For two 2 × 2 matrices:

AB =
(

a b
c d

)(
e f
g h

)
=
(

ae + bg af + bh
ce + dg cf + dh

)
.

Matrix multiplication is not commutative, meaning in general:

AB ̸= BA.
Important: When multiplying both sides of a matrix equation, the multiplication must be done on

the same side. That is, if we have:

AX = B,
then multiplying by another matrix C must be done consistently:

CAX = CB or AXC = BC.
Changing the order may result in a different matrix or an undefined operation.

Identity Matrix
The identity matrix is a special matrix that does not change a matrix when multiplied. The 2 × 2

identity matrix is:

I2 =
(

1 0
0 1

)
.

For any 2 × 2 matrix A:

AI2 = I2A = A.

Determinant of a 2 × 2 Matrix
The determinant of a 2 × 2 matrix:

A =
(

a b
c d

)
is given by:

det(A) = ad − bc.
A matrix is invertible if and only if det(A) ̸= 0.

Inverse of a 2 × 2 Matrix
If A is invertible (det(A) ̸= 0), its inverse is:

A−1 = 1
det(A)

(
d −b

−c a

)
.

The inverse satisfies:

AA−1 = A−1A = I2.

Matrix Powers
For a square matrix A, matrix powers are defined by repeated multiplication:

An = A · A · · · A︸ ︷︷ ︸
n times

, A0 = I2.
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Theorem 4.4.
Let Un be a sequence defined by the homogeneous recurrence relation:

Un = aUn−1 + bUn−2,

where U0 and U1 are given initial conditions, and a, b are real or complex numbers (a, b ∈ R or C).
Then, the sequence Un satisfies the following matrix recurrence relation:(

Un+1
Un

)
=
(

a b
1 0

)(
Un

Un−1

)
=
(

a b
1 0

)n (
U1
U0

)
.

Proof. To verify the result, we compute the right-hand side:(
a b
1 0

)(
Un

Un−1

)
=
(

aUn + bUn−1
Un

)
.

By the recurrence relation, we have Un+1 = aUn+bUn−1, which matches the first entry of the resulting
matrix. The second entry is simply Un, as expected. This confirms the matrix representation of the
recurrence relation.
If we introduce the notation:

Xn =
(

Un+1
Un

)
, A =

(
a b
1 0

)
,

then the recurrence relation from the theorem can be rewritten in a more compact form as:
Xn+1 = AXn.

By iterating this relation and using substitution, we obtain:
Xn+1 = AnX1.

This leads to the natural question: Can we compute the nth power of the matrix A?

Theorem 4.5.
Let Un be the sequence satisfying the recurrence relation:

Un = aUn−1 + bUn−2.

If the associated matrix is given by:

A =
(

a b
1 0

)
,

then its (n − 1)th power is given by:

An−1 =
(

Un+1 Un

Un Un−1

)(
U2 U1
U1 U0

)−1

.

Equivalently, we can write:

An−1
(

U2 U1
U1 U0

)
=
(

Un+1 Un

Un Un−1

)
.

Proof. We proceed by induction on n.
Base Case: For n = 1, we check that:

A0 = I2 =
(

1 0
0 1

)
.

The right-hand side also satisfies: (
U2 U1
U1 U0

)(
U2 U1
U1 U0

)−1

= I2.

Thus, the formula holds for n = 1.
Inductive Step: Assume that for some n, we have:

An−1 =
(

Un+1 Un

Un Un−1

)(
U2 U1
U1 U0

)−1

.

15



We want to show that this holds for n + 1, i.e., that:

An =
(

Un+2 Un+1
Un+1 Un

)(
U2 U1
U1 U0

)−1

.

Using the recurrence relation, we compute:
An = A · An−1.

Substituting the inductive hypothesis:

An = A ·
(

Un+1 Un

Un Un−1

)(
U2 U1
U1 U0

)−1

.

Now, we explicitly compute:

A

(
Un+1 Un

Un Un−1

)
.

Multiplying the matrices: (
a b
1 0

)(
Un+1 Un

Un Un−1

)
gives: (

aUn+1 + bUn aUn + bUn−1
Un+1 Un

)
.

Using the recurrence relation Un+2 = aUn+1 + bUn and Un+1 = aUn + bUn−1, we rewrite this as:(
Un+2 Un+1
Un+1 Un

)
.

Thus, we obtain:

A

(
Un+1 Un

Un Un−1

)
=
(

Un+2 Un+1
Un+1 Un

)
.

Therefore,

An =
(

Un+2 Un+1
Un+1 Un

)(
U2 U1
U1 U0

)−1

.

By induction, the formula holds for all n ≥ 1.
Cassini’s Identity via Determinants:
The previous theorem provides a new proof for Cassini’s identity, which states that for a second-

order linear recurrence sequence:
Un+1Un−1 − U2

n = (−b)n−1(U2U0 − U2
1 ).

Proof. From the theorem, we have the matrix identity:

An−1
(

U2 U1
U1 U0

)
=
(

Un+1 Un

Un Un−1

)
.

Taking determinants on both sides and using the property that for any two invertible square matrices
X and Y :

det(XY ) = det(X) det(Y ),
we obtain:

det
(
An−1

)
det

(
U2 U1
U1 U0

)
= det

(
Un+1 Un

Un Un−1

)
.

Since A satisfies det(A) = −b, we have:
det

(
An−1

)
= (−b)n−1.

Defining

Dn = det
(

Un+1 Un

Un Un−1

)
and

D1 = det
(

U2 U1
U1 U0

)
,

we obtain:
(−b)n−1D1 = Dn.
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Since by determinant properties:
Dn = Un+1Un−1 − U2

n,
and

D1 = U2U0 − U2
1 ,

we conclude:
Un+1Un−1 − U2

n = (−b)n−1(U2U0 − U2
1 ).

This proves Cassini’s identity.

4.3 Some Classical Second-Order Recurrences
We consider some special cases of the recurrence relation:

Un = aUn−1 + bUn−2,

where U0 and U1 are given initial conditions, and a, b are complex numbers. These sequences have
well-known applications in number theory, combinatorics, and continued fractions.

Definition 4.6 (Fibonacci and Lucas Sequences).
The Fibonacci sequence is defined by:

Fn = Fn−1 + Fn−2, with F0 = 0, F1 = 1.

The Lucas sequence follows the same recurrence but with different initial conditions:
Ln = Ln−1 + Ln−2, with L0 = 2, L1 = 1.

Definition 4.7 (Pell and Pell-Lucas Sequences).
The Pell sequence satisfies:

Pn = 2Pn−1 + Pn−2, with P0 = 0, P1 = 1.

The Pell-Lucas sequence is given by:
Qn = 2Qn−1 + Qn−2, with Q0 = 2, Q1 = 2.

Definition 4.8 (Jacobsthal and Jacobsthal-Lucas Sequences).
The Jacobsthal sequence is defined by:

Jn = Jn−1 + 2Jn−2, with J0 = 0, J1 = 1.

The Jacobsthal-Lucas sequence satisfies:
jn = jn−1 + 2jn−2, with j0 = 2, j1 = 1.

Theorem 4.9.
Each sequence Un that starts with the initial conditions U0 = 0 and U1 = 1 is related to its
corresponding Lucas sequence Vn (which starts with V0 = 2 and V1 = a) by the identity:

Vn = Un+1 + Un−1, for n ≥ 1.

Proof. The proof follows by induction on n.
Base Case: For n = 1, we check:

V1 = 1, U2 = a, U0 = 0.

Since U2 +U0 = a+0 = a, and from the recurrence Vn = aVn−1 + bVn−2, we obtain the correct value.
Inductive Step: Assume the relation holds for n, i.e.,

Vn = Un+1 + bUn−1.

We need to show that:
Vn+1 = Un+2 + bUn.

By the recurrence definition of Vn and Un, we have:
Vn+1 = aVn + bVn−1.

Substituting the induction hypothesis:
Vn+1 = a(Un+1 + bUn−1) + b(Un + bUn−2).
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Using the recurrence relation for Un,
Un+2 = aUn+1 + bUn, Un = aUn−1 + bUn−2,

we obtain:
Vn+1 = Un+2 + bUn.

This completes the induction, proving the identity.
Exercise.
For each of the sequences defined above:

1. Binet’s Formula: Derive the explicit formula for Un using characteristic roots.
2. Matrix Representation: Show that Un can be written in terms of matrix exponentiation:(

Un+1
Un

)
=
(

a b
1 0

)n (
U1
U0

)
.

3. Cassini’s Identity: Prove that each sequence satisfies the determinant identity:
Un+1Un−1 − U2

n = (−b)n−1(U2U0 − U2
1 ).

Theorem 4.10.
Let Un be a sequence satisfying the recurrence relation:

Un = aUn−1 + bUn−2, with initial conditions U0 = 0, U1 = 1.

Define another sequence Vn by:
Vn = Un+1 + bUn−1, with V0 = 2 and V1 = a.

Then, the explicit formulas for Un and Vn (Binet’s formulas) are given by:

Un = αn − βn

α − β
, and Vn = αn + βn,

where α and β are the roots of the characteristic equation:
t2 − at − b = 0.

Proof. The proof follows from the standard method of solving second-order linear recurrence rela-
tions.
Examples. • Fibonacci and Lucas

4.4 Tiling Problem
4.4.1 Linear Case

Consider a tiling problem involving a rectangular board of dimensions 1 × n, which consists of n
labeled cells:

· · ·1 2 3 n-2 n-1 n

1 × n board with labeled cells

Our objective is to determine the total number of ways to completely tile this board using the
following two types of tiles:

• Squares of size 1 × 1:

• Dominoes of size 1 × 2:

This problem explores how different combinations of these tiles can fully cover the board, forming
the basis for various combinatorial tiling strategies.

Theorem 4.11.
The number of ways to tile a 1 × n board using identical squares and identical dominoes is given by
Fn+1, where Fn is the Fibonacci sequence.

18



Proof. Let Un denote the number of ways to tile a 1 × n board using identical 1 × 1 squares and
identical 1 × 2 dominoes.

n Possible Tilings

n=1

n=2

n=3

n=4

n=5

Table 1: Base Cases for the Linear Tiling Problem

Recursive Case: Consider the last tile placed on a 1 × n board:
• If the last tile is a 1 × 1 square, the remaining part of the board is a 1 × (n − 1) board, which

can be tiled in Un−1 ways.
• If the last tile is a 1 × 2 domino, it covers the last two squares, leaving a 1 × (n − 2) board,

which can be tiled in Un−2 ways.
This results in the recurrence relation:

Un = Un−1 + Un−2

Since this recurrence is identical to that of the Fibonacci sequence, and given the initial conditions
U1 = 1 and U2 = 2, it follows that:

Un = Fn+1
This completes the proof.

Theorem 4.12.
The Fibonacci sequence satisfies the identity:

Fn+1 =
⌊ n

2 ⌋∑
k=0

(
n − k

k

)
.

Proof.
• Induction.
• Consider the problem of counting the number of ways to tile a 1 × n board using indistin-

guishable 1 × 2 dominoes and 1 × 1 squares. We have previously established that Fn+1, the
(n + 1)-th Fibonacci number, enumerates all possible tilings of the board.
To analyze these tilings systematically, we classify them based on the number of dominoes k,
which may range from 0 (all squares) to

⌊
n
2

⌋
(the maximum number of dominoes that can fit in

the board). Each domino occupies 2 cells, so using k dominoes covers 2k cells, leaving n − 2k
cells to be filled with squares.
The problem of arranging k dominoes and n−2k squares is equivalent to solving the equation:

x1 + x2 + · · · + xk+1 = n − 2k with xi ≥ 0,

where xi represents the number of squares between or adjacent to the dominoes. Specifically:
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– x1: Squares before the first domino
– xi (2 ≤ i ≤ k): Squares between the (i − 1)-th and i-th domino
– xk+1: Squares after the last domino

By the stars and bars theorem, the number of non-negative integer solutions to this equation
is: (

(n − 2k) + k

k

)
=
(

n − k

k

)
.

Summing over all valid values of k gives the total number of tilings:

Fn+1 =
⌊n

2 ⌋∑
k=0

(
n − k

k

)
.

The constraint 2k ≤ n ensures k ≤
⌊

n
2

⌋
, which defines the upper limit of the summation. This

combinatorial argument establishes the connection between Fibonacci numbers and domino
tilings.

4.5 Circular Case
We consider a circular bracelet of length n and investigate the number of ways to tile it using:
• Identical squares of size 1 × 1.
• Identical dominoes of size 1 × 2.

Theorem 4.13.
Let Vn denote the number of ways to tile a circular bracelet of length n using squares and dominoes.
Then Vn satisfies the recurrence:

Vn = Ln,
where Ln is the Lucas number.

Proof. We determine Vn recursively by considering the placement of the last tile.
Base Cases:

n Possible Tilings

n=1

n=2

n=3

n=4

Table 2: Base Cases for the Linear Tiling Problem

Recursive Step: Consider a circular bracelet of length n with labeled cells 1, 2, . . . , n, where cell n
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is adjacent to cell 1. Let Vn denote the number of ways to tile this bracelet using indistinguishable
1 × 1 squares and 1 × 2 dominoes. We analyze the tiling possibilities through case decomposition:

• Case 1: Cell 1 contains a square
The remaining n − 1 cells form a linear chain, which can be tiled in Fn ways, where Fn is the
n-th Fibonacci number.

• Case 2: Cell 1 is covered by a domino
There are two distinct circular configurations:

1. Domino covers cells (1, 2)
2. Domino covers cells (n, 1)

Both configurations leave a linear chain of n−2 cells, each tiling in Fn−1 ways. This contributes
2Fn−1 tilings.

Combining both cases yields the recurrence relation:
Vn = Fn + 2Fn−1.

Using the Fibonacci identity Fn+1 = Fn + Fn−1, we restructure the equation:
Vn = (Fn + Fn−1) + Fn−1 = Fn+1 + Fn−1.

This matches the closed-form expression for the Lucas numbers Ln, which satisfy:
Ln = Fn+1 + Fn−1.

Through induction on n with base cases:
V1 = 1 = L1

V2 = 3 = L2

V3 = 4 = L3

we establish the equivalence for all n ≥ 1. Therefore, the number of bracelet tilings corresponds to
the Lucas sequence:

Vn = Ln.

Theorem 4.14.
The Lucas sequence satisfies the identity:

Ln =
⌊n

2 ⌋∑
k=0

n

n − k

(
n − k

k

)
.

Proof. Consider a circular bracelet of n cells. Let Vn = Ln denote the number of tilings using
squares and dominoes. We analyze tilings by considering two cases for cell 1:

• Case 1: Cell 1 contains a square. The remaining n − 1 cells form a linear chain, which can be
tiled in

(
n−1−k

k

)
ways with k dominoes.

• Case 2: Cell 1 is covered by a domino. There are two configurations:
– Domino covers cells (1, 2)
– Domino covers cells (n, 1)

Each leaves n − 2 cells in a linear chain, tiling in 2
(

n−2−(k−1)
k−1

)
= 2

(
n−1−k

k−1

)
ways.

Combining both cases:

Ln =
⌊n

2 ⌋∑
k=0

[(
n − 1 − k

k

)
+ 2

(
n − 1 − k

k − 1

)]
Using the binomial identity

(
n−k

k

)
=
(

n−1−k
k

)
+
(

n−1−k
k−1

)
, we rewrite:

Ln =
⌊n

2 ⌋∑
k=0

[(
n − k

k

)
+
(

n − 1 − k

k − 1

)]
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Notice that:
n

n − k

(
n − k

k

)
=
(

n − k

k

)
+ k

n − k

(
n − k

k

)

=
(

n − k

k

)
+
(

n − 1 − k

k − 1

)
Thus:

⌊n
2 ⌋∑

k=0

n

n − k

(
n − k

k

)
=

⌊n
2 ⌋∑

k=0

[(
n − k

k

)
+
(

n − 1 − k

k − 1

)]
= Ln

The final equality follows from matching terms with our initial combinatorial expression. This
completes the proof.

4.6 Tiling and generealized sequence of second order
Linear case

Let consider that we want tile the 1‘times n board using squares of a different colors, and dominoes
of b different colors,

Theorem 4.15.
The number of ways to tile a 1 × n board using a types of squares and b types of dominoes satisfies
both:

1. The linear recurrence:

Un =


1 n = 0
a n = 1
aUn−1 + bUn−2 n ≥ 2

2. The combinatorial formula:

Un =
⌊n

2 ⌋∑
k=0

(
n − k

k

)
an−2kbk

Proof.
Recurrence Relation Proof
Consider the last tile in any tiling of a 1 × n board:

• Case 1: Last tile is a square
There are a choices for the square. The remaining n − 1 cells form a 1 × (n − 1) board with
Un−1 tilings.

Contribution: aUn−1

• Case 2: Last tile is a domino
There are b choices for the domino. The remaining n − 2 cells form a 1 × (n − 2) board with
Un−2 tilings.

Contribution: bUn−2

Combining both cases gives the recurrence:
Un = aUn−1 + bUn−2

Combinatorial Proof
Any tiling with k dominoes must contain:

• k dominoes occupying 2k cells
• n − 2k squares occupying the remaining cells

The number of ways to arrange k dominoes and n − 2k squares is equivalent to choosing positions
for the dominoes. This is given by the binomial coefficient

(
n−k

k

)
, as each domino placement reduces

the effective length by k.
Each configuration has:

• an−2k choices for squares
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• bk choices for dominoes
Summing over all possible k values gives:

Un =
⌊n

2 ⌋∑
k=0

(
n − k

k

)
an−2kbk

n Base Case Tilings (a=2, b=3)

1 (2 ways)

2 (4 ways) (3 ways)

3 (8) (6) (6)

Table 3: Example tilings with coefficients a = 2, b = 3

Both proofs agree through:
U2 = a2 + b = 22 + 3 = 7

1∑
k=0

(
2 − k

k

)
22−2k3k =

(
2
0

)
2230 +

(
1
1

)
2031 = 4 + 3 = 7

This establishes the equivalence between the recursive and combinatorial forms.

Circular case
Theorem 4.16.
The number of ways to tile a circular bracelet of n labeled cells using a types of squares and b types
of dominoes satisfies:

Vn =
a n = 1

Un + bUn−2 n ≥ 2
where Un is the linear tiling count from Theorem 1. This can alternatively be expressed as:

Vn =
⌊n

2 ⌋∑
k=0

(
n − k

k

)
an−2kbk + b

⌊n−2
2 ⌋∑

k=0

(
n − 2 − k

k

)
an−2−2kbk

Proof.
Case Analysis for Circular Tilings

• Case 1: Cell 1 contains a square
The remaining n − 1 cells form a linear chain (no circular constraint), yielding:

Contribution: aUn−1

• Case 2: Cell 1 is covered by a domino
Two distinct circular configurations exist:

– Domino covers cells (1, 2)
– Domino covers cells (n, 1)

Each leaves n − 2 cells in linear arrangement. Total contribution:
Contribution: 2bUn−2

Combining both cases gives the recurrence:
Vn = aUn−1 + 2bUn−2
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Combinatorial Interpretation
From Theorem 1, linear tilings are:

Un =
⌊n

2 ⌋∑
k=0

(
n − k

k

)
an−2kbk

Circular tilings include:
• All linear tilings (Un)
• Wrap-around domino tilings not counted in linear case:

b

⌊n−2
2 ⌋∑

k=0

(
n − 2 − k

k

)
an−2−2kbk

Thus:

Vn = Un + bUn−2 =
⌊n

2 ⌋∑
k=0

(
n − k

k

)
an−2kbk + b

⌊n−2
2 ⌋∑

k=0

(
n − 2 − k

k

)
an−2−2kbk

Example Verification
For n = 3, a = 2, b = 3:

U1 = 2
U2 = 22 + 3 = 7
U3 = 2 × 7 + 3 × 2 = 20
V3 = 2 × 7 + 2 × 3 × 2 = 14 + 12 = 26

Combinatorial: (20) + 3 × (2) = 26

5. Higher-Order Recurrence Relations
Let’s consider the homogeneous linear recurrence relation of order m defined by

Un =
a1Un−1 + a2Un−2 + · · · + amUn−m; n ≥ m

U1 = 1; U0 = U−1 = · · · = U−(m−2) = 0; −(m − 2) ≤ n ≤ 1

Theorem 5.1.
The (n + 1)-th term of the homogeneous linear recurrence relation of order m defined above is given
by the formula:

Un+1 =
∑

k1+2k2+···+mkm=n

(
k1 + k2 + · · · + km

k1, k2, . . . , km

)
ak1

1 ak2
2 · · · akm

m .

Proof. Exercise: Induction.
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