
Chapter 1: Introduction to Graph Theory

The Königsberg Bridge Problem
The city of Königsberg (now Kaliningrad, Russia) is divided by a river, creating two large islands

and two mainland portions, all connected by seven bridges as shown in the next figure.

Figure 1: Seven Bridges of Königsberg

The problem asks if it’s possible to walk through the city and cross each bridge exactly once, starting
and ending at the same point. We can represent the problem using the following structure,
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Figure 2: Graph representation of the Königsberg bridges

where the land areas are represented as points and the bridges as lines. This structure is known as
a graph.

1. What’s a graph?
Definition 1.1.
A graph G = (V, E) is defined by two finite sets: V and E, where V = {v1, v2, . . . , vn} is the set of
vertices (with each vi representing a vertex), and E = {e1, e2, . . . , em} is the set of edges, which are
the connections between vertices. The vertices are typically represented as points, and the edges as
lines connecting the corresponding vertices.
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Remark.
Algebraically, a graph represents a binary relation E between the elements of a finite set V of
vertices. The relation R ⊆ V × V consists of ordered pairs (vi, vj), indicating an edge between
vertices vi and vj.

Example.
Consider a graph with vertices V = {v1, v2, v3} and edges E = {(v1, v2), (v2, v3)}. The corresponding
graph is:

v1 v2 v3

Definition 1.2 (Adjacent, Incident, and Isolated).

• Two vertices vi and vj in a graph are said to be adjacent if there exists an edge that connects
vi and vj.

• Similarly, two edges ei and ej are said to be adjacent if they share a common vertex.
• An edge is said to be incident to a vertex if the vertex is one of the endpoints of the edge.
• A vertex vi is said to be isolated if it is not incident to any edge in the graph.

Example.
Consider the following graph G = (V, E), where the set of vertices is V = {v1, v2, v3, v4} and the set
of edges is E = {(v1, v2), (v2, v3)}.

• The vertices v1 and v2 are adjacent because there is an edge (v1, v2) connecting them.
• The edges (v1, v2) and (v2, v3) are adjacent because they share the common vertex v2.
• The edge (v1, v2) is incident to the vertices v1 and v2.
• The vertex v4 is isolated because it is not incident to any edge.

The graph is illustrated below:

v1 v2 v3 v4

Definition 1.3 (Order and Size of a Graph).
The order of a graph G = (V, E), denoted ord(G), is the number of vertices in the graph. That is,

ord(G) = |V |.
The size of a graph G = (V, E), denoted e(G), is the number of edges in the graph. That is,

e(G) = |E|.

Example.
In the previous example, ord(G) = 4 and e(G) = 2.

Definition 1.4 (Degree of a Vertex).
Let G = (V, E) be a graph and v ∈ V be a vertex.
The degree of a vertex v, denoted deg(v), is the number of edges incident to v. Formally, the degree
of v is given by

deg(v) = |{e ∈ E : v is an endpoint of e}|.
• The maximum degree of the graph, denoted ∆(G), is the highest degree of any vertex in

the graph:
∆(G) = max

v∈V
deg(v).

• The minimum degree of the graph, denoted δ(G), is the lowest degree of any vertex in the
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graph:
δ(G) = min

v∈V
deg(v).

Definition 1.5 (Neighbor and Neighborhood).

• A vertex u is said to be a neighbor of vertex v if they are adjacent, i.e., there exists an edge
e = {u, v} ∈ E.

• The neighborhood of v, denoted N(v), is the set of vertices adjacent to v. Formally:
N(v) = {u ∈ V : ∃e ∈ E (e = {u, v})}

– N(v) is called the open neighborhood of v.
– N [v] = N(v) ∪ {v} is called the closed neighborhood of v.

Example.
Consider the graph G = (V, E), where

V = {v1, v2, v3, v4, v5, v6, v7}
and

E = {e1 = (v1, v2), e2 = (v1, v4), e3 = (v1, v6), e4 = (v1, v7), e5 = (v5, v6), e6 = (v6, v7)}.

The corresponding graph is illustrated below:

The degrees of the vertices are:

• deg(v1) = 4
• deg(v2) = 1

• deg(v3) = 0
• deg(v7) = 2

Thus, the maximum degree is ∆(G) = 4 and the minimum degree is δ(G) = 0.

Definition 1.6 (Loop).
A loop in a graph is an edge that connects a vertex to itself.

Definition 1.7 (Simple Graph).
A graph is called a simple graph if it does not contain any loops or multiple edges between the
same pair of vertices.

Definition 1.8 (Empty Graph).
An empty graph is a graph with no edges. It can have any number of vertices, but there are no
edges connecting them. In other words, E(G) = ∅.
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Definition 1.9 (Complete Graph).
A complete graph is a simple graph in which every pair of distinct vertices is connected by a
unique edge. A complete graph on n vertices is denoted by Kn.

2. Directed and Undirected Graphs
Definition 2.1 (Undirected Graph).
An undirected graph is a graph in which the edges have no direction. That is, if there is an edge
between vertices vi and vj, it can be traversed in both directions, and we denote it by {vi, vj}.

Example.
Consider an undirected graph G = (V, E), where:

V = {v1, v2, v3, v4, v5}, E = {{v1, v2}, {v2, v3}, {v2, v4}, {v3, v4}, {v4, v5}, {v5, v1}}.

Here, the edges connect the vertices, and each edge can be traversed in both directions.

v1 v2

v3

v4

v5

—

Definition 2.2 (Directed Graph).
A directed graph (or digraph) is a graph in which the edges have a direction. Each edge is
represented as an ordered pair of vertices, indicating a directed edge from one vertex to another. If
there is an edge from vi to vj, we write it as (vi, vj).

Example.
Consider a directed graph G = (V, E), where:

V = {v1, v2, v3, v4, v5}, E = {(v1, v2), (v2, v3), (v3, v4), (v4, v2), (v4, v5), (v5, v1)}.

Here, each edge can only be traversed in the specified direction.

v1 v2

v3

v4

v5

Note: In this chapter, we will focus only on undirected graphs.

Lemma 2.3 (Handshaking Lemma).
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For any graph G = (V, E), the sum of the degrees of all vertices is twice the number of edges, i. e.,∑
v∈V

deg(v) = 2|E|.

Proof. Each edge contributes 2 to the sum of degrees (1 for each of its two endpoints). Therefore,
the sum of degrees counts each edge exactly twice. Hence∑

v∈V

deg(v) = 2|E|.

Theorem 2.4.
In any graph, the number of vertices with odd degree is even.

Proof. By the Handshaking Lemma, ∑v∈V deg(v) = 2|E|, which is even. Split the sum into vertices
with odd degrees (Vodd) and even degrees (Veven):∑

v∈V

deg(v) =
∑

v∈Vodd

deg(v) +
∑

v∈Veven

deg(v).

Since ∑v∈Veven deg(v) is even, ∑v∈Vodd deg(v) must also be even. The sum of an odd number of odd
integers is odd, so |Vodd| must be even.

3. Walk, Trail, Path, Circuit and Cycle
Definition 3.1 (Walk, Trail, Path, Circuit, Cycle).
Let G = (V, E) be a graph.

• A walk is a sequence of vertices v0, v1, v2, . . . , vk such that {vi, vi+1} ∈ E for all 0 ≤ i < k.
The length of the walk is the number of edges, k.

• A trail is a walk in which no edge is repeated.
• A path is a walk in which no vertex is repeated (and thus no edge is repeated).
• A circuit is a closed walk (i.e., v0 = vk) in which no edge is repeated.
• A cycle is a closed walk (i.e., v0 = vk) in which no vertex is repeated except for the starting

and ending vertex, and no edge is repeated.

Definition 3.2 (Length of a Walk, Path, or Trail).
The length of a walk, path, or trail is defined as the total number of edges it contains, with repeated
edges counted each time they appear in the sequence.

3.1 Key Differences

Term Repeated Vertices Repeated Edges Closed (v0 = vk)
Walk Allowed Allowed Not Required
Trail Allowed Not Allowed Not Required
Path Not Allowed Not Allowed Not Required
Circuit Allowed Not Allowed Required
Cycle Not Allowed (except start/end) Not Allowed Required

Table 1: Comparison of Walk, Trail, Path, Circuit, and Cycle

Example.
Consider the graph G = (V, E), where:

V = {v1, v2, v3, v4, v5, v6}, E = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}, {v1, v5}, {v5, v6}, {v6, v2}}.
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v1 v2

v3

v4

v5 v6

• Walk: v1, v2, v3, v4, v1, v5, v6, v2 (vertices and edges repeat).
• Trail: v1, v2, v3, v4, v1, v5, v6 (no repeated edges).
• Path: v1, v5, v6, v2, v3, v4 (no repeated vertices or edges).
• Circuit: v1, v2, v6, v5, v1 (closed trail).
• Cycle: v1, v2, v3, v4, v1 (closed path).

Remarks.

• The following inclusions hold:
Paths ⊂ Trails ⊂ Walks.

That is, all paths are trails, and all trails are walks.
• The length of a cycle must be at least 3. That is, a cycle must contain 3 or more edges.

Exercise.
Show that in any simple graph with n vertices, there are at most n(n−1)

2 edges.

Solution (Combinatorial Proof).
Let G = (V, E) be a simple graph with n vertices. Since G is simple, it has no loops or multiple
edges. The graph has the most edges when every pair of vertices is connected by exactly one edge.
This is equivalent to the number of ways to choose 2 distinct vertices from n, which is:

|E| ≤
(

n

2

)
= n(n − 1)

2 .

This result can also be proved by induction on n.

Exercise.
Determine the number of distinct simple graphs that can be formed with n vertices.

Solution.
A simple graph with n vertices is determined by its set of edges. The maximum number of edges in
a simple graph with n vertices is

(
n
2

)
, since each edge is uniquely determined by a pair of distinct

vertices.
For each pair of vertices, there are two choices:

• Include the edge between them.
• Exclude the edge between them.

Since there are
(

n
2

)
pairs of vertices, the total number of distinct simple graphs with n vertices is:

2(n
2).

Lemma 3.3.
In any graph with at least two vertices, there are at least two vertices with the same degree.

Proof. In a graph with n ≥ 2 vertices, the possible degrees range from 0 to n − 1. However, a graph
cannot simultaneously have a vertex of degree 0 (isolated) and a vertex of degree n − 1 (connected
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to all others). Therefore, there are at most n − 1 distinct possible degrees for n vertices. By the
Pigeonhole Principle, at least two vertices must have the same degree. (See Worksheet 2, Exercise
6.)

Theorem 3.4.
Let G = (V, E) be a graph, and let u, v ∈ V be two distinct vertices. Any u-v walk in G contains a
u-v path in G.

Proof. Let W = u, v1, . . . , vk−1, v be a u-v walk. If W has no repeated vertices, it is already a u-v
path. Otherwise:

• Let vi = vj be the first repeated vertices in W with i < j.
• Remove the subsequence vi+1, . . . , vj to obtain a shorter walk W ′.
• Repeat this process until no repeated vertices remain. The result is a u-v path.

Thus, any u-v walk contains a u-v path.

4. Connectivity, Subgraphs and Planarity
4.1 Connected Graph

Definition 4.1 (Connected Graph).
A graph G = (V, E) is said to be connected if there exists a path between every pair of distinct
vertices in G. Otherwise, the graph is disconnected.

Example. • A connected graph:

v1 v2

v3

Every pair of vertices is connected by a path.
• A disconnected graph:

v1 v2

v3 v4

No path exists between v1 and v3, or between v2 and v4.

Remark.
Connected vertices and adjacent vertices are distinct concepts in graph theory:

• Two vertices are adjacent if there is an edge directly connecting them.
• Two vertices are connected if there exists a path (a sequence of edges) between them, even

if they are not directly adjacent.
For example, in a path graph v1—v2—v3, v1 and v3 are connected but not adjacent.

Exercise.
Prove that if P and Q are two longest paths in a connected graph, then P and Q share at least one
common vertex.

Solution.
Assume, for contradiction, that P and Q are two longest paths in a connected graph G with no
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common vertices. Since G is connected, there exists a path R connecting a vertex u on P to a vertex
v on Q, where no interior vertex of R lies on P or Q.
Divide P into subpaths P1 and P2 at u, and Q into subpaths Q1 and Q2 at v. Without loss of
generality, assume |P1| ≥ |P2| and |Q1| ≥ |Q2|.
Construct a new path P1 ∪ R ∪ Q1. Its length is:

|P1| + |R| + |Q1| > |P |,
since |P1| ≥ |P |

2 and |Q1| ≥ |Q|
2 . This contradicts the assumption that P and Q are the longest paths.

Hence, P and Q must share at least one common vertex.

u1 u2 u3 u4 u5

P

v1 v2 v3 v4 v5

Q

u

v

R

P1 P2

Q1 Q2

Definition 4.2 (Complement of a Graph).
Let G = (V, E) be a simple graph. The complement of G, denoted G, is the simple graph with
the same vertex set V such that for any two distinct vertices u, v ∈ V ,

{u, v} ∈ E(G) if and only if {u, v} /∈ E(G).
In other words, two vertices are adjacent in G if and only if they are not adjacent in G.
The complement of the complement of G is the original graph:

G = G.

Exercise.
Let G be a simple graph with n vertices, and let G be its complement. Show that:

|E(G)| + |E(G)| =
(

n

2

)
.

Solution.
In a simple graph with n vertices, the total number of possible edges is

(
n
2

)
. The complement G

contains all edges not in G, so:

|E(G)| =
(

n

2

)
− |E(G)|.

Adding the edges of G and G:

|E(G)| + |E(G)| = |E(G)| +
((

n

2

)
− |E(G)|

)
=
(

n

2

)
.

4.2 Subgraphs and component of a Graph
Definition 4.3 (Subgraph).
A graph H = (V ′, E ′) is a subgraph of G = (V, E) if V ′ ⊆ V and E ′ ⊆ E, and every edge in E ′ has
both endpoints in V ′.

Definition 4.4 (Spanning Subgraph).
A spanning subgraph of G = (V, E) is a subgraph H = (V ′, E ′) where V ′ = V and E ′ ⊆ E.
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Definition 4.5 (Induced Subgraph).
An induced subgraph of G = (V, E) is a subgraph H = (V ′, E ′) where V ′ ⊆ V and E ′ contains
all edges in E that have both endpoints in V ′.

Definition 4.6 (Edge-Induced Subgraph).
An edge-induced subgraph of G = (V, E) is a subgraph H = (V ′, E ′) where E ′ ⊆ E and V ′ is the
set of vertices incident to edges in E ′.

—
Examples.
Consider the graph G:

v1 v2

v3

v4 v5

• Subgraph: A subgraph H of G could be:

v1 v2

v3

Here, V ′ = {v1, v2, v3} and E ′ = {{v1, v2}, {v2, v3}}.
• Spanning Subgraph: A spanning subgraph H of G could be:

v1 v2

v3

v4 v5

Here, V ′ = V and E ′ = {{v1, v2}, {v3, v4}, {v4, v5}}.
• Induced Subgraph: An induced subgraph H of G with V ′ = {v1, v2, v3} is:

v1 v2

v3

Here, E ′ = {{v1, v2}, {v2, v3}, {v3, v1}}, which includes all edges of G with both endpoints in
V ′.

• Edge-Induced Subgraph: An edge-induced subgraph H of G with E ′ = {{v1, v2}, {v3, v4}}
is:
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v1 v2

v3

v4

Here, V ′ = {v1, v2, v3, v4}, which are the vertices incident to edges in E ′.

Definition 4.7 (Maximal Subgraph).
A subgraph H = (V ′, E ′) of G = (V, E) is called a maximal subgraph with respect to a property
P if:

• H satisfies P , and
• No larger subgraph of G containing H satisfies P .

In other words, H is maximal if adding any additional vertex or edge from G to H would cause it
to no longer satisfy P .

Example.
Consider the graph G:

v1 v2

v3 v4

• A maximal acyclic subgraph of G is:

v1 v2

v3 v4

This subgraph is acyclic, and adding any additional edge from G (e.g., {v1, v3}) would create
a cycle, violating the acyclic property.

Exercise.
Let G be a graph with n vertices and m edges. How many induced subgraphs and how many spanning
subgraphs does G have?

Solution.

• Induced Subgraphs: There are 2n induced subgraphs, as each subset of vertices defines a
unique induced subgraph.

• Spanning Subgraphs: There are 2m spanning subgraphs, as each subset of edges defines a
unique spanning subgraph.

Definition 4.8 (Component).
A component of a graph G = (V, E) is a maximal connected subgraph of G.

Remark.
A graph is connected if it has exactly one component. Otherwise, it is disconnected.
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Example.
Consider the graph G:

v1 v2

v3 v4

v5 v6

This graph has two components:
• One component contains v1, v2, v3, forming a triangle.
• The other component contains v4, v5, v6, forming another triangle.

Each component is a maximal connected subgraph because:
• No additional vertices or edges can be added to either component without disconnecting it.
• The graph G is disconnected because it has more than one component.

4.3 Cliques and Stable Sets
Definition 4.9 (Stable Set).
A stable set (or independent set) in a graph G = (V, E) is a subset of vertices S ⊆ V such that
no two vertices in S are adjacent. A maximal stable set is a stable set that cannot be extended
by adding another vertex. A maximum stable set is a stable set of the largest possible size. The
size of a maximum stable set is denoted by α(G), the stability number of G.

Example.
Consider the graph G:

v1 v2

v3 v4

• The sets {v1, v3}, {v1, v4}, {v2, v3}, and {v2, v4} are maximal stable sets.
• The maximum stable set has size α(G) = 2.

Definition 4.10 (Clique).
A clique in a graph G = (V, E) is a subset of vertices C ⊆ V such that every two distinct vertices in
C are adjacent. A maximal clique is a clique that cannot be extended by adding another vertex.
A maximum clique is a clique of the largest possible size. The size of a maximum clique is denoted
by ω(G), the clique number of G.

Example.
Consider the graph G:

v1 v2

v3 v4

• The sets {v1, v2, v3} and {v2, v4} are maximal cliques.
• The maximum clique has size ω(G) = 3.
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4.4 Trees
Definition 4.11 (Tree).
A tree is a connected acyclic graph.

Definition 4.12 (Leaf).
In a tree, a leaf is a vertex of degree 1.

Definition 4.13.
A spanning tree of a connected graph G is a spanning subgraph of G that is a tree.

Definition 4.14.
A forest is a graph where each connected component is a tree. Equivalently, a forest is a graph with
no cycles.

Example.
Here are some examples of trees with drawings:

• A single vertex (trivial tree):

• A path graph P4 with 4 vertices:

• A star graph S4 with one central vertex connected to 3 leaves:

• A binary tree of height 2:

Theorem 4.15.
A graph G is a tree if and only if every pair of vertices is connected by a unique path.

Proof.
• ( =⇒ ) If G is a tree, it is connected and acyclic. By definition, there is exactly one path

between any two vertices.
• ( ⇐= ) If every pair of vertices in G has a unique path, then G is connected. If G had a

cycle, there would be two distinct paths between some pair of vertices, which contradicts the
assumption. Thus, G is acyclic and hence a tree.

Theorem 4.16.
A graph G is a tree if and only if it has n − 1 edges.

13



Proof.
• ( =⇒ ) If G is a tree, it has n − 1 edges. This can be proved by induction on n.
• ( ⇐= ) If G has n − 1 edges and is connected, it is a tree. If G had a cycle, removing an edge

from the cycle would leave G connected with n − 2 edges, which contradicts the fact that a
connected graph must have at least n − 1 edges. Thus, G is acyclic and hence a tree.

Theorem 4.17.
Let T be a tree with ni vertices of degree i, where i = 1, 2, . . . , k and k = ∆(T ). Then:

n1 = 2 + n3 + 2n4 + 3n5 + · · · + (k − 2)nk.

Proof.
• By the Handshaking Lemma, ∑k

i=1 i · ni = 2(n − 1).
• Since T is a tree, it has n − 1 edges.
• Rearrange the equation to solve for n1:

n1 = 2 + n3 + 2n4 + 3n5 + · · · + (k − 2)nk.

Theorem 4.18.
A forest with n vertices and k trees has n − k edges.

Proof. Each of the k trees in the forest is a connected component. A tree with ni vertices has ni −1
edges. Summing over all k trees, the total number of edges is:

k∑
i=1

(ni − 1) =
(

k∑
i=1

ni

)
− k = n − k,

since ∑k
i=1 ni = n.
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