
Python Programming

Python programming 1/69

Python programming 1/69

What is Python?1

Python is an interpreted high-level general-purpose programming
language. Its design philosophy emphasizes code readability with its
use of significant indentation. Its language constructs as well as its
object-oriented approach aim to help programmers write clear, logical
code for small and large-scale projects.

1https://en.wikipedia.org/wiki/Python (programming language)
Python programming 2/69

Who created Python?

Python was created by Guido van Rossum in the Netherlands in 1990.
Van Rossum developed Python as a hobby, and Python has become a
popular programming language widely used in industry and academia
due to its simple, concise, and intuitive syntax and extensive library.

Python programming 3/69

Why Python?

Because of many reasons2:

Easy to learn: Learning Python is nothing but learning English.

Used everywhere: Python is used in AI, ML(Artificial
Intelligence and Machine Learning). It is also used in data
science, games, apps, websites, automation, etc.

General purpose programming language: It is a general
purpose programming language which means it can be used on
all devices and also in many different situations.

Loads of libraries: Want to solve algebraic equations? Use
numpy. Want to deal with images? Use PIL.

Just few lines of code does great: With Python in just 5
lines of code is equivalent to, say, 20 lines of PHP code.

Great community: Many people are willing to help with
issues regarding Python. There is a great community.

2https://www.quora.com/Why-do-people-still-use-Python
Python programming 4/69

Why Python?3

3https://becominghuman.ai/why-is-python-so-popular-b01a006b2be4
Python programming 5/69

Why Python?

Python programming 6/69

Why Python?

Python programming 7/69

What is an open source/free software?4

Free and open-source software (FOSS) is software that is both free
software and open-source software[a] where anyone is freely licensed
to use, copy, study, and change the software in any way, and the
source code is openly shared so that people are encouraged to
voluntarily improve the design of the software.
Examples of free software: VLC Media, Linux Mint, Gimp,
Firefox, ... etc.

4https://en.wikipedia.org/wiki/Free and open-source software
Python programming 8/69

What is a Licence?

A software license is a contract by which the copyright holder of a
computer program defines with his co-contractor (operator or user)
the conditions under which this program may be used, distributed or
modified.

Python programming 9/69

GNU Licence5

The GNU General Public License (GNU GPL or simply GPL) is a
series of widely used free software licenses that guarantee end users
the four freedoms to run, study, share, and modify the software.

5https://en.wikipedia.org/wiki/GNU General Public License
Python programming 10/69

Levels of freedom of a software

Python programming 11/69

Is there other types of licences?

Python programming 12/69

What we will study during the semester

Chap 1
Introduction to comput-

ers, Programs and Python

Chap 2 Elementary Programming

Chap 3
Mathematical Func-

tions and Strings

Chap 4 Conditions

Chap 5 Loops

Python programming 13/69

What we will study during the semester

Chap 6 Functions

Chap 7 Lists

Chap 8 Tuples, Sets and Dictionaries

Chap 9 Multidimensional Lists

Chap 10 Files and Exceptions Handling

Python programming 14/69

Differents ways to run Python

Interactive Mode (Command prompt).

Command Line (File running) ’python file.py’.

Text Editor (VS Code, Jupyter).

IDE (PyCharm)

Python programming 15/69

Type of Errors

Syntax errors result from errors in code construction, such as
mistyping a statement, incor- rect indentation, omitting some
necessary punctuation, or using an opening parenthesis with- out
a corresponding closing parenthesis.

Runtime errors are errors that cause a program to terminate
abnormally. They occur while a program is running if the Python
interpreter detects an operation that is impossible to carry out.

Logic errors occur when a program does not perform the way it
was intended to. Errors of this kind occur for many different
reasons.

Python programming 16/69

Objective of the course

At the end of this semester, you will be able to solve a problem and
write its code in Python.

Python programming 17/69

Elementary programming

Comments

All modern programming languages have comment characters. These
indicate part of the code that should be skipped by the interpreter.

Why comments !

Comments can be used to explain Python code.

Comments can be used to make the code more readable.

Comments can be used to prevent execution when testing code.

How we write comments ?

Any characters after a sharp (#) on a line are skipped.

Python programming 18/69

Elementary programming

1 #This is a comment
2 #written in
3 #more than just one line
4 print(”Hello, NHSM!”)
5 #print(”This line will be ignored ”)
6 print(”Did you understand comments ?”) #This line will print ”Did ...?”

Python multiline comments

Python doesn’t support multiline comments.
However, you can use two triple quotes (”””) as multiline comments.
Guido van Rossum, the creator of Python, also recommended this.

1 ””” This is a comment
2 written in
3 more than just one line
4 ”””
5 print(”Hello, NHSM!”)

Python programming 19/69

Elementary programming

Variables assignement

Variables consist of two parts: the identifier (name) and the value.

To assign a variable to a name, use a single equals sign (=).
A variable is created the moment you first assign a value to it.

1 Name = ”Omar” #Create a variable named ’Name’ with String value ’Omar’
2 Age = 5 #Create a variable named ’Age’ with Integer value ’25’
3 High = 1.73 #Create a variable named ’Age’ with real value ’1.73’

Python allows you to assign a single or multiple values (not
mandatory of the same type) to several variables simultaneously.

1 a = b = c = 10 #assign a single 10 to a,b and c
2 Name,Age,High = ”Omar”,2,1.73 #assign 3 different values to 3 variables.

Python programming 20/69

Elementary programming

Type of variable

You don’t do this in Python, however, because Python automatically
figures out the data type according to the value assigned to the
variable.
The most used types in Python are:

1 int #numerical type
2 float #numerical type
3 str #for textual manipulation
4 bool #logical type
5 complex #numerical type

You can determine the type of a variable or a literal value by using
the type() function.

1 >>> High = 1.73
2 >>> type(High)
3 <class ’float’>
4 >>> type(43)
5 <class ’int’>

Python programming 21/69

Elementary programming

type conversion

You can convert from one type to another with the int(), float(),
and complex() methods:

1 x = 5 # int
2 y = 1.81 # float
3 z = 3+1j # complex
4
5 #convert from int to float:
6 a = float(x)
7 #convert from float to int:
8 b = int(y)
9 #convert from int to complex:

10 c = complex(x)
11
12 print(a)
13 print(b)
14 print(c)
15
16 print(type(a))
17 print(type(b))
18 print(type(c))

Python programming 22/69

Elementary programming

Dynamic types of variables

Python is dynamically typed. This means that:

Types are set on the variable values and not on the variable
names.

Variable types do not need to be known before the variables are
used.

Variable names can change types when their values are changed.

1 a=3
2 a=”yes”
3 a=1.73

Python programming 23/69

Elementary programming

Naming variables

Variable names can contain only letters, numbers, and
underscores (_). They can start with a letter or an underscore
(_), not with a number.

Variable names cannot contain spaces. To separate words in
variables, you use underscores for example sorted_list

Variable names cannot the same as keywords, reserved words,
and built-in functions in Python.

The following guidelines help you define good variable names:

Variable names should be concise and descriptive. For example,
the active_user variable is more descriptive than the au.

Use underscores (_) to separate multiple words in the variable
names.

Avoid using the letter l and the uppercase letter O because they
look like the number 1 and 0.

Python programming 24/69

Elementary programming

Operators & Evaluating expressions

Operators are the syntax that Python uses to express common ways
to manipulate data and variables.

Python divides the operators in the following groups:

Arithmetic operators

Arithmetic operators are used with numeric values to perform
common mathematical operations:

Operator Name Usage
+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Float Division x / y

% Remainder x % y

** Exponentiation x ** y

// Integer division x // y

Python programming 25/69

Elementary programming

Operators & Evaluating expressions

Assignment operators

Assignment operators are used to assign values to variables:

Operator Name Usage
= assignment x=3

+= addition assignment x+=3

-= subtraction assignment x-=3

= multiplication assignment x=3

/= float division assignment x/=3

//= integer division assignment x//=3

%= remainder assignment x%=3

= exponent assignment x=3

Python programming 26/69

Elementary programming

Operators & Evaluating expressions

Relational operators

Logical operators are used to combine conditional statements:

Operator Name Usage
< less than x<y

<= less than or equal to x<=y

> greater than x>y

>= greater than or equal to x>=y

== equal to x==y

!= not equal x!=y

Python programming 27/69

Elementary programming

Operators & Evaluating expressions

Logical operators

Logical operators are used to combine conditional statements:

Operator Name Usage
and logical conjunction x < 5 and x < 10

or logical disjunction x < 5 or x < 4

not logical negation not(x < 5 and x < 10)

Python programming 28/69

Elementary programming

Python Operators Precedence Rule

An expression is made with combinations of variables, values,
operators and function calls.

The Python interpreter evaluates the valid expression.

Python uses a type of rule known as PEMDAS.
1 P: Parentheses
2 E: Exponentiation
3 M: Multiplication
4 D: Division
5 A: Addition
6 S: Subtraction

Operators with the same precedence (except for **) are
evaluated from left-to-right.

Python programming 29/69

Elementary programming

Input / output data

1 Age=eval(input(”How old are you ?”))# input statement
2 print(Age)#Output (display) statement

Python programming 30/69

Elementary programming

Types of Errors

Syntax Errors

Syntax errors are the most basic type of error. They arise when the
Python parser is unable to understand a line of code. Syntax errors
are almost always fatal, i.e. there is almost never a way to
successfully execute a piece of code containing syntax errors

Python programming 31/69

Elementary programming

Runtime Errors

A program with a runtime error is one that passed the interpreter’s
syntax checks, and started to execute. However, during the execution
of one of the statements in the program, an error occurred that
caused the interpreter to stop executing the program and display an
error message. Runtime errors are also called exceptions because they
usually indicate that something exceptional (and bad) has happened.
Some examples of Python runtime errors:

1 division by zero

2 performing an operation on incompatible types

3 using an identifier which has not been defined

4 accessing a list element, dictionary value or object attribute
which doesn’t exist

5 trying to access a file which doesn’t exist

Python programming 32/69

Elementary programming

Logic Errors

These are the most difficult type of error to find, because they will
give unpredictable results and may crash your program. A lot of
different things can happen if you have a logic error. However these
are very easy to fix as you can use a debugger, which will run through
the program and fix any problems.
Here are some examples of mistakes which lead to logical errors:

1 using the wrong variable name

2 indenting a block to the wrong level

3 using integer division instead of floating point division

4 getting operator precedence wrong

5 making a mistake in a boolean expression

6 off-by-one, and other numerical errors

Python programming 33/69

Elementary programming

Documentation

There is online and offline versions of Python documentation

online: https://www.python.org/doc/

offline: Zeal https://zealdocs.org/

Python programming 34/69

https://www.python.org/doc/
https://zealdocs.org/

Elementary programming

How to find a solution for a problem

Write the Errors on Google as it is.

Ask a question on a forum.

Python programming 35/69

Math functions and Strings

Mathematical functions

Python has a limited number of built-in mathematical functions:

1 abs(number) #Return the absolute value of the argument, |x|.
2 pow(x , y , [z]) #Raise x to the y power. If z is present, this is done
3 #modulo z , x y % z .
4 round(number , [ndigits]) #Round number to ndigits beyond the decimal
5 #point (rounds a number to the nearest
6 #whole number).
7 cmp(x , y) #Compare x and y , returning a number.
8 hex(number)#Create a hexadecimal string representation of number . A
9 #leading ’0x’ is placed on the string as a reminder that

10 #this is hexadecimal.
11 oct(number)#Create a octal string representation of number .
12 #A leading ’0’ is placed on the string as a reminder that this
13 #is octal not decimal.
14 int(string , [base]) #Generates an integer from the string x . If base is
15 #supplied, x must be in the given base. If base is
16 #omitted, x must be decimal.
17 max(sequence) #Return the largest value in sequence .
18 min(sequence) #Return the smallest value in sequence .
19 ord(character) #Returns the Unicode code from a given character.
20 chr(character) #Returns a character whose Unicode code point is an integer

. Python programming 36/69

Math functions and Strings

math module functions

More advanced mathematical functions are contained in the math

module.
A module is a file that contains a collection of related functions.
Before we can use the functions from a module, we have to import
them:

1 import math # call module before use
2 angle = 90 ∗ 2 ∗ math.pi / 360.0
3 math.sin(angle)

Python programming 37/69

Math functions and Strings

Examples

1 math.ceil(x) #Returns the smallest integer greater than or equal to x.
2 math.fabs(x) #Returns the absolute value of x
3 math.factorial(x) #Returns the factorial of x
4 math.floor(x) #Returns the largest integer less than or equal to x
5 math.fmod(x, y) #Returns the remainder when x is divided by y
6 math.exp(x) #Returns e∗∗x
7 math.log(x[, b]) #Returns the logarithm of x to the base b (defaults to e)
8 math.log2(x) #Returns the base−2 logarithm of x
9 math.log10(x) #Returns the base−10 logarithm of x

10 math.pow(x, y) #Returns x raised to the power y
11 math.sqrt(x) #Returns the square root of x
12 math.acos(x) #Returns the arc cosine of x
13 math.asin(x) #Returns the arc sine of x
14 math.atan(x) #Returns the arc tangent of x

Python programming 38/69

Math functions and Strings

Examples

1 math.cos(x) #Returns the cosine of x
2 math.sin(x) #Returns the sine of x
3 math.tan(x) #Returns the tangent of x
4 math.degrees(x) #Converts angle x from radians to degrees
5 math.radians(x) #Converts angle x from degrees to radians
6 math.acosh(x) #Returns the inverse hyperbolic cosine of x
7 math.asinh(x) #Returns the inverse hyperbolic sine of x
8 math.atanh(x) #Returns the inverse hyperbolic tangent of x
9 math.cosh(x) #Returns the hyperbolic cosine of x

10 math.sinh(x) #Returns the hyperbolic cosine of x
11 math.tanh(x) #Returns the hyperbolic tangent of x
12 math.pi #Mathematical constant, the ratio of circumference of a
13 #circle to it’s diameter (3.14159...)
14 math.e #Mathematical constant e (2.71828...)

Python programming 39/69

Math functions and Strings

What is String in Python?

A string is a sequence of characters.

How to create a string in Python?

Strings can be created by enclosing characters inside a single quote or
double-quotes.
Even triple quotes can be used in Python but generally used to
represent multiline strings and docstrings.

1 # defining strings in Python, all of the following are equivalent
2 say hello = ’Hello’
3
4 say hello = ”Hello”
5
6 say hello = ’’’Hello’’’
7
8 # triple quotes string can extend multiple lines
9 say hello = ”””Hello, welcome to

10 the world of Python”””

Python programming 40/69

Math functions and Strings

How to access characters in a string?

We can access individual characters using indexing and a range
of characters using slicing.

Python is zero-indexing language, Index starts from 0.

Trying to access a character out of index range will raise an
IndexError.

The index must be an integer. We can’t use floats or other types,
this will result into TypeError.

Python allows negative indexing for its sequences.

The index of −1 refers to the last item, −2 to the second last
item and so on. We can access a range of items in a string by
using the slicing operator :(colon).

Python programming 41/69

Math functions and Strings

1 #Accessing string characters in Python
2 my word = ’ThisIsALongWord’
3 print(’my word = ’, my word)
4
5 #first character
6 print(’my word[0] = ’, my word[0])
7
8 #last character
9 print(’my word[−1] = ’, my word[−1])

10
11 #slicing 2nd to 5th character
12 print(’my word[1:5] = ’, my word[1:5])
13
14 #slicing 6th to 2nd last character
15 print(’my word[5:−2] = ’, my word[5:−2])

Now, we try to access an index out of the range or use numbers other
than an integer

1 # index must be in range
2 my word[16]
3 # index must be an integer
4 my word[1+0j]

Python programming 42/69

Math functions and Strings

Common Operations on Strings

Concatenation of Two or More Strings
Joining of two or more strings into a single one is called concatenation.
The + operator does this in Python. Simply writing two string literals
together also concatenates them.
The * operator can be used to repeat a string for a given number of
times.

1 # Python String Operations
2 str1 = ’Hello’
3 str2 =’NHSM!’
4
5 # using +
6 print(’str1 + str2 = ’, str1 + str2)
7 # using ∗
8 print(’str2 ∗ 3 =’, str2 ∗ 3)
9 # two string literals together

10 str1=’Hello ’’World!’
11 print(’str1 =’, str1)

Python programming 43/69

Math functions and Strings

String Membership Test
We can test if a substring exists within a string or not, using the
keyword in

1 ’me’ in ’home’
2 ’ho’ not in ’home’

Built-in functions to Work with Python
The enumerate() function returns an enumerate object.
The len() returns the length (number of characters) of the string.

1 word=”Hello NHSM”
2 print(enumerate(word))
3 print(len(word))

Python programming 44/69

Math functions and Strings
Common String methods

Some of the commonly used methods are lower(), upper(), join(),
split(), find(), replace() etc.

1 word=”PythonIsNotFunny”
2 print(word.lower())
3 print(word.upper())
4 sentence=”This will split all words into a list”
5 print(sentence.split())
6 sentence=”This will split, all words, into a list”
7 print(sentence.split(’,’))
8 word list=[’This’, ’will’, ’join’, ’all’, ’words’, ’into’, ’a’, ’string’]
9 delimiter=”∗”

10 print(delimiter.join(word list))
11 print(’ ’.join(word list))
12 print(’Happy Day with python’.find(’ay’))
13 print(’Happy Day with python’.replace(’Happy’,’Brilliant’))

Python programming 45/69

Indentation

Python Indentation

Indentation is a very important concept of Python because without
proper indenting the Python code, you will end up seeing
IndentationError and the code will not get compiled.
In simple terms indentation refers to adding white space before a
statement.

1 Username = ’Omar 213’
2 if Username == ’Omar 213’:
3 print(’Logging on to website...’)
4 password=input(’Enter your password’)
5 else:
6 print(’You are in the wrong place.’)
7 print(’All set !’)

Python programming 46/69

Indentation

Python Indentation Rules

Python uses 4 spaces as default indentation spaces. However, the
number of spaces can be anything, it is up to the user. But a
minimum of one space is needed to indent a statement.

The first line of python code cannot have Indentation.

Indentation is mandatory in python to define the blocks of
statements.

The number of spaces must be uniform in a block of code.

It is preferred to use whitespaces instead of tabs to indent in
python. Also, either use whitespace or tabs to indent,
intermixing of tabs and whitespaces in indentation can cause
wrong indentation errors.

Python programming 47/69

Indentation

Benefits of Indentation in Python

Indentation of code leads to better readability, although the
primary reason for indentation in python is to identify block
structures.

Missing { and } errors that sometimes popup in c,c++ languages
(or other languages) can be avoided in python, also the number
of lines of code is reduced.

Python programming 48/69

Conditions

if statement

Some programming problems need special treatment.
Let consider the following situation:

Write a program that asks the user’s age, then prints out the message
”You are still young!” if his age is less than 30.

to solve this problem, we need to use if statement given by the
following syntax:

1 if (test): #condition
2 block of instructions #body

An if statement executes the statements if the condition is true,
and ignores it if the condition is false.

The block of instructions must starts with and indentation and
will end at the first unindented statement.

Python programming 49/69

Conditions

begin if

test
(condition)

body

end if

True

False

Figure 1: Python if Statement Flowchart

Therefore, the solution of the previous situation is:

1 age=int(input(”How old are you”))
2 if (age<30):
3 print(”You are still young!”)

Python programming 50/69

Conditions

if...else statements

If we have two outputs based on
whether the condition is true or
false, we use the if...else

statements

When the condition evaluates
to True executes the
body of if and the

body of else is skipped.

When the condition evaluates
to False the body of if is

skipped and the
body of else executes.

begin if

test
(condition)

body if

body else

end if

False

Figure 2: if..else Flowchart

Python programming 51/69

Conditions

The syntax of if...else statement is:

1 if conditional test:
2 body of if
3 else:
4 body of else

Example

Write a program that asks the user to enter two numbers, then prints
out the max between them without using any built-in function or
module.

1 a,b=int(input(”Give the first number”)),int(input(”Give the second number”))
2 if (a>=b):
3 print(a)
4 else:
5 print(b)

Python programming 52/69

Conditions

Example

Let suppose that we want to develop a quiz to practice subtraction for
kids. Then
Write a program which do the following steps:

Generate two random numbers, num1 and num2 between 0 and
100 (use the function randint(0,100) from the module random).

If (num1<num2), swap the numbers num1 and num2.

Asks the user to enter the result of the subtraction by print out
(”What is ”,num1,”-”,num2).

Check the user’s answer and display whatever the answer is
correct or no.

Python programming 53/69

Conditions

if..elif..else statement

Often, we are faced the case of more than two possible results of the
conditional test, to evaluate these we can use the if-elif-else

statement syntax:

#Chained conditional

if conditional test1:
body of if

elif conditional test2:
body of elif

elif conditional test3:
body of elif
...

else:
body of else

⇐⇒

if conditional test1:
body of if

else:
if conditional test2:

body of else if
else:

if conditional test3:
body of else if

. . . #Nested conditional
else:

body of else

In the right side statement, when we place an if statement inside
another, we form a nested if statement.

In python, the chained conditional are better then nested.

Python programming 54/69

Conditions

Example

Write a program which check if given number is positive, Zero or
negative.

1 #Chained conditional
2 num=int(input(”Enter a number\n”))
3 if num > 0:
4 print(”Positive number”)
5 elif num == 0:
6 print(”Zero”)
7 else:
8 print(”Negative number”)

1 #Nested
2 num=int(input(”Enter a number\n”))
3 if num > 0:
4 print(”Positive number”)
5 else:
6 if num == 0:
7 print(”Zero”)
8 else:
9 print(”Negative number”)

Python programming 55/69

Conditions

Common errors in conditions

The operator of comparison is == and not =:

1 if (a==0):#correct
2 if (a=0):#incorrect

Use and where or is or vice-versa carefully. For example, which
conditional tests is true if 1 ≤ x ≤ 100?

1 if x>1 and x<100: #Correct
2 if x>1 or x<100: #Incorrect

The common mistake below will generate SyntaxError.

1 if age>1 and age<100: #Correct
2 if age>1 and <100: #Incorrect

Indentation errors are the most common errors in conditions.

1 if age>1 and age<100:
2 age+=2
3 print(age)#Must be in the same column as the first instruction

Python programming 56/69

Conditions

In algebra, a quadratic equation is an equation in the form of

ax2 + bx + c = 0

Write a program to find all roots (real or complex) of a quadratic
equation using if else.

Exercise 1:

Python programming 57/69

Loops

Loops

Write a program which print the following messages
”Hi Student 1”
”Hi Student 2”

...
”Hi Student 90”
”Hi Student 100”

Exercise 2:

Will you print all the messages using 100 print function?!! So What
we can do ?

In programming, loops are the statements that allow executing the
same block of instructions multiple times.
Python has essentially two types of loops: while loops and for

loops.

Python programming 58/69

Loops

While loops

A while loop allows a block of instructions to execute as long as
(or while) a condition is True.

When the condition is False, the loop’s body is ignored, and the
execution continues at the first statement after the body of the
while loop.

The body of the while loop is determined through indentation.

If the condition always evaluates to True, the body will be
executed infinitely, that’s what we call infinite loop problem.

We must update the condition’s variables to avoid the infinite
loop.

Generally, we use while loops when we don’t know the number of
executions of the loop’s body.

Python programming 59/69

Loops

while syntax and flowchart

while’s loop syntax is:

while (condition):
block instructions #body

Listing 1: while syntax

Figure 3: while flowchart
Python programming 60/69

Loops

While loop with else

while loop can have an optional else. The else body is executed if the
condition is False

1 counter = 0
2 while counter < 3:
3 print(”Inside while body”)
4 counter = counter + 1
5 else:
6 print(”Inside else body”)

Python programming 61/69

Loops

for loops

The for loop allows to execute a block of instructions multiple
times. In fact, this loop is used to iterate over iterable objects.

An iterable objects is a sequence of items capable of returning
its members one by one, for example list and strings are
iterable objects.

The for loop syntax in python is:

for loop var in iterable object:
for block #body

The variable loop var take the values of the items of the iterable
object. Loop continues until the variable reach the last item in the
sequence.
The body of the loop must be indented.

Python programming 62/69

Loops

Draw the flowchart of for loop

Exercise 3:

Example: Python for Loop

1 word=”NHSM”
2 for letter in word:
3 print(letter)

Python programming 63/69

Loops

range() function

In python, we can use the range() function to generate a sequence of
numbers. The usage of range function is as follows:

range([start], stop,[step size])

start :(Optional). An integer number specifying at which position to start.

Default is 0.

stop :An integer number specifying at which position to stop

(not included).

step :(Optional). An integer number specifying the incrementation.

Default is 0.

Try this

1 print(range(10))
2 print(list(range(10)))
3 print(list(range(2, 8)))
4 print(list(range(2, 20, 3)))

Python programming 64/69

Loops

Examples

1 #example1
2 for i in range(9):
3 print(i)
4 else:
5 print(”No items left.”)
6 #example2 (else)
7 digits=[6,2,9]
8 for digit in digits:
9 print(digit)

10 else:
11 print(”No items left.”)
12 #example3
13 # Program to iterate through a list using indexing
14 names = [’Omar’, ’Mohamed’, ’Ali’]
15 # iterate over the list using index
16 for i in range(len(names)):
17 print(”His name is”, names[i])

Python programming 65/69

Loops

Loops

Write a program which print the following messages
”Hi Student 1”
”Hi Student 2”

...
”Hi Student 90”
”Hi Student 100”

Exercise 4:

Will you print all the messages using 100 print function?!! So What
we can do ?

In programming, loops are the statements that allow executing the
same block of instructions multiple times.
Python has essentially two types of loops: while loops and for

loops.

Python programming 66/69

Loops

range() function

In python, we can use the range() function to generate a sequence of
numbers. The usage of range function is as follows:

range([start], stop,[step size])

start :(Optional). An integer number specifying at which position to start.

Default is 0.

stop :An integer number specifying at which position to stop

(not included).

step :(Optional). An integer number specifying the incrementation.

Default is 0.

Try this

1 print(range(10))
2 print(list(range(10)))
3 print(list(range(2, 8)))
4 print(list(range(2, 20, 3)))

Python programming 67/69

Loops

Examples

1 #example1
2 for i in range(9):
3 print(i)
4 else:
5 print(”No items left.”)
6 #example2 (else)
7 digits=[6,2,9]
8 for digit in digits:
9 print(digit)

10 else:
11 print(”No items left.”)
12 #example3
13 # Program to iterate through a list using indexing
14 names = [’Omar’, ’Mohamed’, ’Ali’]
15 # iterate over the list using index
16 for i in range(len(names)):
17 print(”His name is”, names[i])

Python programming 68/69

Loops

break and continue

The break statement terminates the loop containing it. The
program execute the statement immediately after the body of the
loop.

The continue statement is used to skip the rest of the code
inside a loop for the current iteration only. Loop does not
terminate but continues on with the next iteration.

1 name=”NHSM”
2 for letter in name:
3 if (letter==’S’):
4 break
5 print(letter)

1 name=”NHSM”
2 for letter in name:
3 if (letter==’S’):
4 continue
5 print(letter)

Python programming 69/69

